Home
Class 12
MATHS
The sum of 1+n(1-1/x)+(n(n+1))/(2!)(1-1/...

The sum of `1+n(1-1/x)+(n(n+1))/(2!)(1-1/x)^2+.....oo`

A

`x^(n)`

B

`x^(-n)`

C

`(1-1/x)^(n)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`1+n(1-1/x) + (n(n+1))/(2!) (1-1/x)^(2)+"…."oo`
`= 1-n[-(1-1/x)]+(-n(-n-1))/(2!)[-(1-(1)/(x))]^(2)+"....."oo`
`= [1-(1-(1)/(x))]^(-n)`
`= x^(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If |x|<1,then 1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is equal to

Let x_n = (1 - 1/3)^2 (1-1/6)^2 (1-1/10)^2 ...... (1 - 1/((n(n + 1))/2))^2, n ge 2 Then the value of underset(nrarrinfty)(lim) x_n is

Obtain the sum of (1)/(x+1)+(2)/(x^(2)+1)+(4)/(x^(4)+1)+...+ (2^(n))/(x^(2^(n))+1)

Find the sum of the series 1+2(1-x)+3(1-x)(1-2x)+....+n(1-x)(1-2x) (1-3x)............[1-(n-1)x].

Find the value of (1+x)^(n)+^(n)C_(1)(1+x)^(n-1).(1-x)+^(n)C_(2)(1+x)^(n-2)(1-x)^(2)+.....+(1-x)^(n)

Find the sum of the series 1.n+2(n-1)+3(n-2)+.....n.1 .

lim_(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)), n in N , equals

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+......+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

The sum of the series 1+(1)/(2)""^(n)C_(1)+(1)/(3)""^(n)C_(2)+…+(1)/(n+1)""^(n)C_(n) is equal to-

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(0))/(1)-(C_(1))/(2)+(C_(2))/(3)-......+(-1)^(n).(C_(n))/(n+1)=(1)/(n+1)

CENGAGE PUBLICATION-BINOMIAL THEOREM-Single Correct Answer
  1. Find the value of (sumsum)(0leiltjlen) (i+j)(""^(n)C(i)+""^(n)C(j)).

    Text Solution

    |

  2. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be a...

    Text Solution

    |

  3. The sum of 1+n(1-1/x)+(n(n+1))/(2!)(1-1/x)^2+.....oo

    Text Solution

    |

  4. sum(k=1)^ook(1-1/n)^(k-1) =?

    Text Solution

    |

  5. The coefficient of x in the expansion of {sqrt(1+x^2)-x}^(-1) in ascen...

    Text Solution

    |

  6. 1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+------ is equal to

    Text Solution

    |

  7. 1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….." is equal to

    Text Solution

    |

  8. If |x|<1,then 1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is eq...

    Text Solution

    |

  9. The coefficient of x^5in(1+2x+3x^2+)^(-3//2)i s(|x|<1)

    Text Solution

    |

  10. If |x|<1, then the coefficient of x^n in expansion of (1+x+x^2+x^3+)^2...

    Text Solution

    |

  11. If x is positive, the first negative term in the expansion of (1+x)^(2...

    Text Solution

    |

  12. If x is so small that x^3 and higher powers of x may be neglected, the...

    Text Solution

    |

  13. If the expansion in power of x of the function (1)/(( 1 - ax)(1 - b...

    Text Solution

    |

  14. If (x^(2)+x+1)/(1-x) = a(0) + a(1)x+a(2)x^(2)+"….", then sum(r=1)^(50...

    Text Solution

    |

  15. If (1-x)^(-n)=a0+a1x+a2x^2++ar x^r+ ,t h e na0+a1+a2++ar is equal to ...

    Text Solution

    |

  16. The coefficient of x^(103) in (1+x+x^(2) +x^(3)+x^(4))^(199)(x-1)^(201...

    Text Solution

    |

  17. The term independent of x in the product (4 + x + 7x^2)(x-3/x)^11 is (...

    Text Solution

    |

  18. The 13^(th) term in the expanion of (x^(2)+2//x)^(n) is independent of...

    Text Solution

    |

  19. Coefficient of x^(2009) in (1+x+x^(2)+x^(3)+x^(4))^(1001) (1-x)^(1002)...

    Text Solution

    |

  20. If the constant term in the binomial expansion of (x^2-1/x)^n ,n in N...

    Text Solution

    |