Home
Class 12
MATHS
If for z as real or complex, (1+z^2+z^4)...

If for `z` as real or complex, `(1+z^2+z^4)^8=C_0+C_1z^2+C_2z^4+...+C_(16)z^(32) then ` prove that `C_(0) - C_(1) + C_(2) - C_(3) + "….." + C_(16) = 1` and `C_(0) + C_(3) + C_(6) + C_(12) + C_(15) = 3^(7)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`(1+z^(2)+z^(4))^(8) = C_(0) + C_(1)z^(2) + X_(2)z^(4) + "….." + C_(16)z^(32) " "(1)`
Putting `x = i`, where `i = sqrt(-1)`.
`(1-1+1)^(8) = C_(0) - C_(1) + C_(2) - C_(3) + "….." + C_(16)`
or `C_(0) - C_(1) + C_(2) - C_(3) + "……" + C_(16) = 1`
Also, putting `z = omega`
`(1+omega^(2)+omega^(4))^(8)= C_(0) + C_(1)omega^(2) + C_(2)omega^(4) + "....." + C_(16)omega^(32)`
or `C_(0) + C_(1)omega^(2) + C_(2)omega + C_(3) + "...." + C_(16)omega^(2) = 0 " "(3)`
Putting `x = omega^(2)`.
`(1+omega^(4)+omega^(8))^(8) = C_(0) + C_(1)omega^(4) + C_(2)omega^(8) + "......" + C_(16)omega^(64)`
or `C_(0) + C_(1)omega + C_(2)omega^(2) + "....." + C_(16)omega = 0 " "(3)`
Putting `x = 1`,
`3^(8) = C_(0) + C_(1) + C_(2) + "....."+C_(16) " "(4)`
Adding (2), (3) and (4), we have
`3(C_(0) + C_(3) + "......" + C_(15)) = 3^(8)`
or `C_(0) + C_(3) + "......" + C_(15) = 3^(7)`
Similarly, first multiplying (1) by x and then putting `1 omega, omega^(2)` and adding, we get
`C_(1) + C_(4) + C_(7) + C_(10) + C_(13)+ C_(16) = 3^(7)`
Multiplying (1) by `z^(2)` and then putting `1, omega, omega^(2)` and adding, we get
`C_(2)+C_(5)+C_(8)+C_(11)+C_(14)= 3^(7)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Matrix|4 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Single Correct Answer|152 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)

If (1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n) , then find the value of C_(0)+C_(2)+C_(4)+C_(6)+........ ​ ​

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)+4C_(1)+8C_(2)+12C_(3)+......+4nC_(n)=1+n.2^(n+1)

Prove that C_0+2C_1+4C_2+8C_3+.....+2^nC_n=3^n .

If (1+x)^(n)=C_(0)+C_(1)+x+C_(2)x^(2)+...+C_(n)x^(n) show that, C_(0)-2^(2)*C_(1)+3^(2)*C_(2)-...+(-1)^(n)*(n+1)^(2)*C_(n)=0 (n gt 2)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)C_(1)+C_(1)C_(2)+C_(2)C_(3)+.....+C__(n-1)C_(n)=((2n)!)/((n+1)!(n-1)!)

If (1+x)^(15)=C_0+C_1x+C_2x^2+……..+C_(15)x^(15) then ,^15C_0^2-^15C_1^2+^15C_2 ^2 -^15C_3 ^2 +……-^15C_(15) ^2 is equal to

If (1+x)^(n)=^(n)C_(0)+^(n)C_(1)x+^(n)C_(2)x^(2)+…+^(n)C_(n)x^(n) , prove that, nC_(1)-2^(n)C_(2)+3^(n)C_(3)-…+(-1)^(n-1).n^(n)C_(n)=0 .

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0).C_(n)+C_(1).C_(n-1)+C_(2).C_(n-2)+....+C_(n).C_(0)=((2n)!)/((n!)^(2))

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : 3.^(n)C_(0)-8.^(n)C_(1)+13.^(n)C_(2)-18.^(n)C_(3)+....."up to"(n+1)"terms" =0

CENGAGE PUBLICATION-BINOMIAL THEOREM-Multiple Correct Answer Type
  1. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  2. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  3. The middle term in the expansion of (x/2+2)^8 is 1120, then x in R is...

    Text Solution

    |

  4. In the expansion of (3-sqrt(17/4+3sqrt2))^15 the 11th term is a

    Text Solution

    |

  5. For the expansion (x sin p + x^(-1)cos p)^(10), (p in R),

    Text Solution

    |

  6. For which of the following values of x ,5t h term is the numerically g...

    Text Solution

    |

  7. Which of the following is/are true ?

    Text Solution

    |

  8. If sn= sum(r=0)^n 1/(^"nCr) and tn=sum(r=0)^n r/("^nCr) then tn/sn is ...

    Text Solution

    |

  9. The value of .^(n)C(1)+.^(n+1)C(2)+.^(n+2)C(3)+"….."+.^(n+m-1)C(m) is ...

    Text Solution

    |

  10. The number of terms in the expansion of (x^2+1+1/x^2)^n, n in N , is:

    Text Solution

    |

  11. In the expansion of (7^(1//3)+11^(1//9))^(6561) ,

    Text Solution

    |

  12. If (1+x)^(n) = C(0) + C(1)x + C(2)x^(2) + "….." + C(n)x^(n), then fin...

    Text Solution

    |

  13. In the expansion of (a+b)^(n), if two consecutive terms are equal, the...

    Text Solution

    |

  14. If for z as real or complex, (1+z^2+z^4)^8=C0+C1z^2+C2z^4+...+C(16)z^(...

    Text Solution

    |

  15. If f(m) = sum(i=0)^m ({:(30),(30-i):})({:(20),(m-i):}) where ({:(p),(...

    Text Solution

    |

  16. If (1+x)^n=C0+C1x+C2 x^2+...+Cn x^n , n in N ,then C0-C1+C2-.....+(-1...

    Text Solution

    |

  17. If sum(r=0)^(n) (pr+2).""^(n)C(r)=(25)(64) where n, p in N, then (a) p...

    Text Solution

    |

  18. If (x+1/x+1)^(6)=a(0)+(a(1)x+(b(1))/(x))+(a(2)x^(2)+(b(2))/(x^(2)))+"....

    Text Solution

    |

  19. Find the value of .^(20)C(0) xx .^(13)C(10) - .^(20)C(1) xx .^(12)C(...

    Text Solution

    |

  20. The sum 2 xx ""^(40)C(2) + 6 xx ""^(40)C(3) + 12 xx ""^(40)C(4) + 20 x...

    Text Solution

    |