Home
Class 12
MATHS
An equation a(0) + a(2)x^(2) + "……" + a(...

An equation `a_(0) + a_(2)x^(2) + "……" + a_(99)x^(99) + x^(100) = 0` has roots `.^(99)C_(0), .^(99)C_(1), C_(99)C_(2), "…..", .^(99)C_(99)`
the value of `a_(98)` is equal to

Text Solution

Verified by Experts

The correct Answer is:
C

`a_(0) + a_(1)x+a_(2)x+"...."+a_(99)x+x^(100) = 0` has root `.^(99)C_(0), .^(99)C_(1), .^(99)C_(2), "....", .^(99)C_(99)`.
or `a_(0) + a_(1)x+a_(2)x^(2) + "...."+a_(99)x^(99) + x^(100)`
`= (x-.^(99)C_(0))(x-.^(99)C_(1)) (x-.^(99)C_(2))"....."(x-.^(99)C_(99))`
Now, sum of root is
`.^(99)C_(0)+.^(99)C_(1)+.^(99)C_(2)+"...."+.^(99)C_(99)= - (a_(99))/("coefficient of" x^(100))`
or `a_(99) = - 2^(99)`
Also, sum of product of roots taken two at a time is
`(a_(99))/("coefficient of" x^(100))`
`:. underset(0 le i lt j le 99)(sumsum) .^(99)C_(i).^(99)C_(j) = ((underset(i=0)overset(99)sumunderset(j=0)overset(99)sum.^(99)C_(i).^(99)C_(j))- underset(i=0)overset(99)sum(.^(99)C_(i))^(2))/(2)`
`= ((underset(i=0)overset(99)sum.^(99)C_(i)2^(99))-underset(i=0)overset(99)sum(.^(99)C_(i))^(2))/(2)`
`= (2^(99)2^(99)-underset(i=0)overset(99)sum(.^(99)C_(i))^(2))/(2)`
`= (2^(198) - .^(198)C_(99))/(2)`
`(.^(99)C_(0))^(2)+ (.^(99)C_(1))^(2) + "......" + (.^(99)C_(99))^(2)`
`= (.^(99)C_(0) + .^(99)C_(1) + .^(99)C_(2) "......." + .^(99)C_(99))^(2) - 2 underset(0lei ltjle99)(sumsum).^(99)C_(i).^(99)C_(j)`
`= (-a_(99))^(2) - 2a_(98)`
`= a_(99)^(2) - 2a_(98)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Matrix|4 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|27 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

An equation a_(0) + a_(2)x^(2) + "……" + a_(99)x^(99) + x^(100) = 0 has roots .^(99)C_(0), .^(99)C_(1), ^(99)C_(2), "…..", .^(99)C_(99) The value of (.^(99)C_(0))^(2) + (.^(99)C_(1))^(2) + "….." + (.^(99)C_(99))^(2) is equal to

An equation a_(0)+a_(1)x+a_(2)x^(2)+....+a_(99)x^(99)+x^(100)=0" has roots "^(99)C_(0),^(99)C_(1),^(99)C_(2),...,^(99)C_(99) The value of a_(99) is equal to -

An equation a_(0)+a_(1)x+a_(2)x^(2)+....+a_(99)x^(99)+x^(100)=0" has roots "^(99)C_(0),^(99)C_(1),^(99)C_(2),...,^(99)C_(99) The value of a_(98) is -

An equation a_0+a_1x+a_2x^2+...............+a_99x^99+x^100=0 has roots .^(99)C_0 ,.^(99)C_1,.^(99)C_2....^(99)C_99 . Find the value of a_99 .

Let (x+10)^(50)+(x-10)^(50)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(50)x^(50) for all x in R , then (a_(2))/(a_(0)) is equal to

If (x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…." , then sum_(r=1)^(50) a_(r) equal to

If (1+x-2x^(2))^(6) = 1 + a_(1)x+a_(2)x^(2) + "……" + a_(12)x^(12) , then find the value of a_(2) + a_(4) +a_(6)+ "……" + a_(12) .

The value of 99^(50) - 99.98^(50) + (99*98)/(1*2) (97)^(50) -…+ 99 is

Find the derivative of 99x at x = l00.

CENGAGE PUBLICATION-BINOMIAL THEOREM-Linked Comphrension
  1. The sixth term in the expansion of [sqrt({2^(log(10-3^(x)))})+5sqrt(...

    Text Solution

    |

  2. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  3. The sixth term in the expansion of [sqrt({2^(log(10-3^(x)))})+5sqrt(...

    Text Solution

    |

  4. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, 7...

    Text Solution

    |

  5. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, 7...

    Text Solution

    |

  6. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, 7...

    Text Solution

    |

  7. An equation a(0) + a(2)x^(2) + "……" + a(99)x^(99) + x^(100) = 0 has ro...

    Text Solution

    |

  8. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  9. An equation a(0) + a(2)x^(2) + "……" + a(99)x^(99) + x^(100) = 0 has ro...

    Text Solution

    |

  10. If a= .^(20)C(0) + .^(20)C(3) + .^(20)C(6) + .^(20)C(9) + "…..", b = ....

    Text Solution

    |

  11. If a= ^(20)C(0) + ^(20)C(3) + ^(20)C(6) + ^(20)C(9) + "…..", b = ^(20)...

    Text Solution

    |

  12. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  13. The sum of all the coefficients of the expansion of (a+b+c+d)^(8) whi...

    Text Solution

    |

  14. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  15. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  16. Let P =sum(r=1)^(50)(""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), R = su...

    Text Solution

    |

  17. Let Q = sum(r=0)^(50)(""^(50)C(r))^(2), R = sum(r=0)^(100)(-1)^(r) (""...

    Text Solution

    |

  18. If (1+x-2x^(2))^(6) = 1 + a(1)x+a(2)x^(2) + "……" + a(12)x^(12), then f...

    Text Solution

    |

  19. If (1+x+2x^(2))^(20) = a(0) + a(1)x^() "……" + a(40)x^(40), then follow...

    Text Solution

    |

  20. If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then follo...

    Text Solution

    |