Home
Class 12
MATHS
Let Q = sum(r=0)^(50)(""^(50)C(r))^(2), ...

Let `Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2)`
Then find the value of Q + R

Text Solution

Verified by Experts

The correct Answer is:
C

In P, general term of the series is
`T_(r)=(.^(50-r)C_(r)(2r-1))/(.^(50)C_(r)(50+r))`
`=(.^(50+r)C_(r))/(.^(50)C_(r))(1-(50-r+1)/(50+r))`
`= (.^(50+r)C_(r))/(.^(50)C_(r))-(.^(50+r)C_(r))/(.^(50)C_(r))((50-r+1)/(50+r))`
Now,
`(.^(50+r)C_(r))/(.^(50)C_(r))((50-r+1)/(50+r))`
`= ((50-r+1)(50+r)!r!(50-r)!)/(r!50!(50+r)50!)`
`=((50-r+1)!(50+r-1)!)/(50!50!)`
`= (.^(50+r-1)C_(r-1))/(.^(50)C_(r-1))`
`rArr T(r) = (.^(50+r)C_(r))/(.^(50)C_(r)) - (.^(50+r-1)C_(r-1))/(.^(50)C_(r-1))= V(r) - V(r-1)`
Where `V(r) = (.^(50+r)C_(r))/(.^(50)C_(r))`
Now sum of the given series
`P = underset(r=1)overset(50)sumT(r)=V(50)-V(0)`
`= (.^(100)C_(50))/(.^(50)C_(50))- (.^(50)C_(0))/(.^(50)C_(0)) = .^(100)C_(50) - 1`
Also,
`Q = underset(r=0)overset(50)sum(.^(50)C_(r))^(2) = .^(50)C_(0)^(2) + .^(50)C_(1)^(2)+.^(50)C_(2)^(2)+"...."+.^(50)C_(50)^(2)`
`= .^(100)C_(50)`
`rArr P - Q = -1`
We know that
`C_(0)^(2) - C_(1)^(2) + C_(2)^(2) + "....." + (-1)^(n) C_(n)^(2)`
`={{:(0,"If n is odd"),((-1)^(n).^(n)C_(n//2),"if n is even"):}`
`rArr underset(r=0)overset(100)sum(-1)^(r)(.^(100)C_(r))^(2)=(-1)^(100).^(100)C_(50) = .^(100)C_(50)`
`rArr P - R = - 1`
`Q+R = 2.^(100)C_(50) = 2P + 2`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Matrix|4 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|27 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Let P =sum_(r=1)^(50)(""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of P - R is equal to

Let P = sum_(r=1)^(50) (""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=1)^(50) (""^(50)C_(r))^(2) , Then find the value of P - Q

Let t_(100)=sum_(r=0)^(100)(1)/(("^(100)C_(r ))^(5)) and S_(100)=sum_(r=0)^(100)(r )/(("^(100)C_(r ))^(5)) , then the value of (100t_(100))/(S_(100)) is (a) 1 (b) 2 (c) 3 (d) 4

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then find n

Find the sum sum_(r=0)^(5)""^(32)C_(6r) .

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is

The value of sum_(r=0)^(3n-1)(-1)^r .^(6n)C_(2r+1)3^r is

The value of sum_(r=0)^(20)r(20-r)( ^(20)C_r)^2 is equal to ?

CENGAGE PUBLICATION-BINOMIAL THEOREM-Linked Comphrension
  1. The sixth term in the expansion of [sqrt({2^(log(10-3^(x)))})+5sqrt(...

    Text Solution

    |

  2. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  3. The sixth term in the expansion of [sqrt({2^(log(10-3^(x)))})+5sqrt(...

    Text Solution

    |

  4. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, 7...

    Text Solution

    |

  5. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, 7...

    Text Solution

    |

  6. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, 7...

    Text Solution

    |

  7. An equation a(0) + a(2)x^(2) + "……" + a(99)x^(99) + x^(100) = 0 has ro...

    Text Solution

    |

  8. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  9. An equation a(0) + a(2)x^(2) + "……" + a(99)x^(99) + x^(100) = 0 has ro...

    Text Solution

    |

  10. If a= .^(20)C(0) + .^(20)C(3) + .^(20)C(6) + .^(20)C(9) + "…..", b = ....

    Text Solution

    |

  11. If a= ^(20)C(0) + ^(20)C(3) + ^(20)C(6) + ^(20)C(9) + "…..", b = ^(20)...

    Text Solution

    |

  12. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  13. The sum of all the coefficients of the expansion of (a+b+c+d)^(8) whi...

    Text Solution

    |

  14. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  15. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  16. Let P =sum(r=1)^(50)(""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), R = su...

    Text Solution

    |

  17. Let Q = sum(r=0)^(50)(""^(50)C(r))^(2), R = sum(r=0)^(100)(-1)^(r) (""...

    Text Solution

    |

  18. If (1+x-2x^(2))^(6) = 1 + a(1)x+a(2)x^(2) + "……" + a(12)x^(12), then f...

    Text Solution

    |

  19. If (1+x+2x^(2))^(20) = a(0) + a(1)x^() "……" + a(40)x^(40), then follow...

    Text Solution

    |

  20. If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then follo...

    Text Solution

    |