Home
Class 12
MATHS
If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) ...

If `(1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40)`, then following questions.
The value of `a_(0) +a_(2) + a_(4)+ "……" + a_(38)` is

A

(a) `161 xx 3^(20)`

B

(b) `41 xx 3^(40)`

C

(c) `41 xx 3^(20)`

D

(d) none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Let, `(1+x+x^(2))^(20) = underset(r=0)overset(40)suma_(r)x^(r ) " "(1)`
Replacing x by `1//x`, we get
`(1+x1/x+1/(x^(2)))^(20) = underset(r=0)overset(40)suma_(r)(1/x)^(r )`
or `(1+x+x^(2))^(20) = underset(r=0)overset(40)suma_(r)x^(40-r) " "(2)`
Since (1) and (2) are same series, coefficient of `x^(r )` is (1) `=` coefficient of `x^(r)` in (2).
`rArr a_(r) = a_(40-r)`
In (1) Putting `x = 1`, we get
`3^(20) = a_(0)+a_(1)+a_(2)+"...."+a_(40)`
`= (a_(0)+a_(1)+a_(2)+"...."+a_(19))+a_(20)+(a_(21)+a_(n+2)+"..."+a_(40))`
`= 2(a_(0)+a_(1)+a_(2)+"...."+a_(19))+a_(20)" "( :' a_(r) = a_(40-r))`
or `a_(0) + a_(1) + a_(2) + "......."+ a_(19) = 1/2 (3^(20)-a_(20)) = 1/2(9^(10) - a_(20))`
Also,
`a_(0)+3a_(1)+5a_(2)+81a_(40)`
`= (a_(0)+81a_(40))+(3a_(1)+79a_(39))+"...."+(39a_(19)+43a_(21))+41a_(20)`
`= 82(a_(0) + a_(1) + a_(2) + "......" + a_(19)) + 41a_(20)`
`= 41 xx 3^(20)`
`a_(0)^(2) - a_(1)^(2) + a_(2)^(2) - a_(3)^(2) + "....."` suggests that we have to multiply the two expansions.
Replacing x by `-1//x` in (1), we get
`(1-1/x+1/(x^(2)))^(20) = a_(0) - (a_(1))/(x)+(a_(2))/(x^(2))-"...."+(a_(40))/(a_(40))`
`rArr (1-x+x^(2))^(20) = a_(0)x^(40) - a_(1)x^(39) + a_(2)x^(38) - "....."a_(40)" "(3)`
Clearly,
`a_(0)^(3) - a_(1)^(2) + a_(2)^(2) + "....."+ a_(0)^(2)` is the coefficeint of `x^(40)` in `(1+x+x^(2)) (1-x+x^(2))^(20)`
= Coefficient of `x^(40)` in `(1+x^(2)+x^(4))^(20)`
In `(1+x^(2)+x^(4))^(20)` replace `x^(2)`, by y, then the coefficientof `y^(20)` in `(1+y+y^(2))^(20)` is `a_(20)`.
Hence `a_(0)^(2) - a_(1)^(2) -"......"+a_(40)^(2) = a_(20)`
or `(a_(0)^(2) - a_(1)^(2) + a_(2)^(2) - "....." - a_(19)^(2)) + a_(20)^(2) + (-a_(21)^(2) + "....." + a_(40)^(2)) = a_(20)`
or `2(a_(0)^(2) - a_(1)^(2) + a_(2)^(2) - "....." - a_(19)^(2)) + a_(20)^(2) = a_(20)`
or `a_(0)^(2) - a_(1)^(2) -"......" - a_(19)^(2) = (a_(20))/(2)[1-a_(20)]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Matrix|4 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|27 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^() "……" + a_(40)x^(40) , then following questions. The value of a_(0) +a_(2) + a_(4)+ "……" + a_(38) is

If (1+x-2x^(2))^(6) = 1 + a_(1)x+a_(2)x^(2) + "……" + a_(12)x^(12) , then find the value of a_(2) + a_(4) +a_(6)+ "……" + a_(12) .

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . Which of the following is true for 1 lt r lt 2n

Let (1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+.....+a_(18)x^(18) . Then

Let (1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(18)x^(18) . Then

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

If (x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…." , then sum_(r=1)^(50) a_(r) equal to

If (1-x-x^(2))^(20) = sum_(r=0)^(40)a_(r).x^(r ) , then value of a_(1) + 3a_(3) + 5a_(5) + "….." + 39a_(39) is

If (1+x-2x^2)^(20)=a_0+a_1x+a_2x^2+a_3x^3+...+a_(40)x^(40), then find the value of a_1+a_3+a_5+...+a_(39)dot

CENGAGE PUBLICATION-BINOMIAL THEOREM-Linked Comphrension
  1. The sixth term in the expansion of [sqrt({2^(log(10-3^(x)))})+5sqrt(...

    Text Solution

    |

  2. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  3. The sixth term in the expansion of [sqrt({2^(log(10-3^(x)))})+5sqrt(...

    Text Solution

    |

  4. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, 7...

    Text Solution

    |

  5. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, 7...

    Text Solution

    |

  6. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, 7...

    Text Solution

    |

  7. An equation a(0) + a(2)x^(2) + "……" + a(99)x^(99) + x^(100) = 0 has ro...

    Text Solution

    |

  8. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  9. An equation a(0) + a(2)x^(2) + "……" + a(99)x^(99) + x^(100) = 0 has ro...

    Text Solution

    |

  10. If a= .^(20)C(0) + .^(20)C(3) + .^(20)C(6) + .^(20)C(9) + "…..", b = ....

    Text Solution

    |

  11. If a= ^(20)C(0) + ^(20)C(3) + ^(20)C(6) + ^(20)C(9) + "…..", b = ^(20)...

    Text Solution

    |

  12. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  13. The sum of all the coefficients of the expansion of (a+b+c+d)^(8) whi...

    Text Solution

    |

  14. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  15. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  16. Let P =sum(r=1)^(50)(""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), R = su...

    Text Solution

    |

  17. Let Q = sum(r=0)^(50)(""^(50)C(r))^(2), R = sum(r=0)^(100)(-1)^(r) (""...

    Text Solution

    |

  18. If (1+x-2x^(2))^(6) = 1 + a(1)x+a(2)x^(2) + "……" + a(12)x^(12), then f...

    Text Solution

    |

  19. If (1+x+2x^(2))^(20) = a(0) + a(1)x^() "……" + a(40)x^(40), then follow...

    Text Solution

    |

  20. If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then follo...

    Text Solution

    |