Home
Class 12
MATHS
A coin has probability p of showing head...

A coin has probability `p` of showing head when tossed. It is tossed n times. Let `P_n` denote the probability that no two (or more) consecutive heads occur. Prove that `P_1 = 1,P_2 = 1 - p^2 and P_n= (1 - p) P_(n-1) + p(1 - p) P_(n-2)` for all `n geq 3`.

Text Solution

Verified by Experts

Given that the probability of showing head by a coin when tossed is p.
So, the probability of coin not showing head is (1-p). Now, `p_(n)` denotes probability that no two or more consecutive heads occur in n throws.
Clearly, `p_(1)=1` as when coin is tossed once there will be no two consectiven heads.
Also, `p_(2)=P(HT)+P(TH)+P(T T)`
`=p(1-p)+p(1-p)+(1-p)^(2)=1-p^(2)`
Let event A is "last toss is tail" and evetn B is "last toss is head and second last toss is tail."
`therefore` Using total probability theorem,
`p_(n)=p_(n-1)xxP(A)+p_(n-2)xxP(B)`
`thereforep_(n)=(1-p)p_(n-1)+p(1-p)p_(n-2)"for all n"ge3.`
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise CONCEPT APPCICATION EXERCISE 14.1|5 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise CONCEPT APPCICATION EXERCISE 14.2|3 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROBABILITY I

    CENGAGE PUBLICATION|Exercise JEE Advanced|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos

Similar Questions

Explore conceptually related problems

Prove that .^nP_r = ^(n-1)P_r + r^(n-1)P_(r-1)

One hundred identical coins, each with probability 'p' of showing heads are tossed once. If 0 lt p lt 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, then the value of p is

A certain coin is tossed with probability of showing head being 'p' . Let 'q' denotes the probability that when the coin is tossed four times the number of heads obtained is even. Then (a) there is no value of p , if q=(1)/(4) (b) there is exactly two value of p , if q=(3)/(4) (c) there are exactly three value of p , if q=(3)/(5) (d) there are exactly four value of p , if q=(4)/(5)

If .^(2n+1)P_(n-1): .^(2n-1)P_(n)=3:5 , find n.

If p is the probability that a man aged x will die in a year, then the probability that out of n men A_1,A_2, A_n each aged x ,A_1 will die in an year and be the first to die is a. 1-(1-p)^n b. (1-p)^n c. 1//n[1-(1-p)^n] d. 1//n(1-p)^n

Let P(n) denote the statement that n^2+n is odd. It is seen that P(n) implies P(n+1) , P(n) is true for all

Find n if ""^(n-1)P_(3) : ""^(n)P_(4)=1:9 .

Prove that .^(n)P_(r)=.^(n-1)P_(r)+r.^(n-1)P_(r-1) .

If n be a positive interger and p_(n) denotes the product of the binomial coefficients in the expansion of (1+x)^(n)," Prove that, "(P_(n+1))/(P_(n))=(n+1)^(n)/(n!) .

If p be occurrence of an event in a single trail, then show that the probability of at least one occurrence in n trials is 1-(1-p)^n .

CENGAGE PUBLICATION-PROBABILITY II-SOLVED EXAMPLES
  1. Suppose Aa n dB shoot independently until each hits his target. They h...

    Text Solution

    |

  2. A tennis match of best of 5 sets is played by two players A and B. The...

    Text Solution

    |

  3. A coin has probability p of showing head when tossed. It is tossed n t...

    Text Solution

    |

  4. The probability of hitting a target by three marksmen are 1/2, 1/3 a...

    Text Solution

    |

  5. Factorise the following: a^4 + 2a^2b^2 + b^4

    Text Solution

    |

  6. If A and B are two independent events, prove that P(AuuB).P(A'nnB')<=P...

    Text Solution

    |

  7. Two players P(1)and P(2) are playing the final of a chess championship...

    Text Solution

    |

  8. Consider a game played by 10 people in which each flips a fair up coin...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. simplify the expression: (7m – 8n)^2 + (7m + 8n)^2

    Text Solution

    |

  11. An urn contains 2 white and 2 black balls. A ball is drawn at random. ...

    Text Solution

    |

  12. An unbiased coin is tossed. If the result is a head, a pair of unbi...

    Text Solution

    |

  13. Answer the following questions : If m things are distributed among a m...

    Text Solution

    |

  14. Simplify the expression: (ab + bc)^2– 2ab²c

    Text Solution

    |

  15. From an urn containing a white and b black balls, k balls are drawn an...

    Text Solution

    |

  16. A bag contains n balls, one of which is white. The probability that A ...

    Text Solution

    |

  17. A bag contains a total of 20 books on physics and mathematics, Any po...

    Text Solution

    |

  18. In a test, an examinee either guesses or copies or knows the answer to...

    Text Solution

    |

  19. A box contains N coins m of which are fair and the rest are biased. Th...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |