Home
Class 12
MATHS
If the length of the latus rectum rectum...

If the length of the latus rectum rectum of the parabola `169{(x-1)^(2)+(y-3)^(2)}=(5x-12y+17)^(2)` is `L` then the value of `13L/4` is _________.

Text Solution

Verified by Experts

The correct Answer is:
7

(7) Here, `(x-1)^(2)+(y-3)^(2)={(5x-12+17)/(sqrt(5^(2))+(-12)^(2))}^(2)`
Therefore, the is (1,3) and directrix is 5x-12y+17=0.
The distance of the focus from the directrix is
`|(5xx1-12xx3+17)/(sqrt(5^(2)+(-12)^(2)))|=(14)/(13)`
`:." Length of latus rectum"=2xx(14)/(13)=(28)/(13)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PARABOLA

    CENGAGE PUBLICATION|Exercise ARCHIVES SINGLE CORRECT ANSWER TYPE|8 Videos
  • PARABOLA

    CENGAGE PUBLICATION|Exercise JEE ADVENCED SINGLE CORRECT ANSWER TYPE|2 Videos
  • PARABOLA

    CENGAGE PUBLICATION|Exercise MATRIX MATCH TYPE|5 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Numberical Value Type|5 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE PUBLICATION|Exercise Comprehension|8 Videos

Similar Questions

Explore conceptually related problems

The length of the latus rectum of the parabola x^2 −4x−8y+12=0 is

The length of the latus rectum of the hyperbola 9x^2-25y^2=225 is

Knowledge Check

  • The length of latus rectum of the parabola (y-1)^(2) =- 6( x+2) is_

    A
    2 units
    B
    3 units
    C
    5 units
    D
    6 units
  • The length of latus rectum of the parabola 3x^(2) =- 8y is _

    A
    `(4)/(3)` unit
    B
    `(8)/(3)` unit
    C
    `(2)/(3)` unit
    D
    4 unit
  • The length of latus rectum of the hyperabola 9y^(2) - 4x^(2) = 36 is -

    A
    8 unit
    B
    9 unit
    C
    10 unit
    D
    12 unit
  • Similar Questions

    Explore conceptually related problems

    Write the length of the latus rectum of the hyperbola 16 x^2-9y^2=144.

    Find the latus rectum of the parabola (y-3)^2=6(x-2)

    Find the length of the latus rectum of the parabola y =- 2x^(2) + 12 x - 17 .

    find the length of the latus rectum of the ellipse (x^(2))/(9) +(y^(2))/(16) = 1

    The length of latus rectum of the hyperabola 9x^(2) - 25y^(2) = 225 is -