Home
Class 12
MATHS
If veca xx vecb = vecb xx vecc ne 0 whe...

If `veca xx vecb = vecb xx vecc ne 0 ` where `veca , vecb and vecc` are coplanar vectors, then for some scalar k prove that `veca+vecc = kvecb`.

Text Solution

Verified by Experts

since `veca xx vecb = vecb xx vecc ne vec0` , we have
`veca xx vecb - vecb xx vecc = vec0`
` or veca xx vecb + vecc xx vecb = vec0`
`or ( veca + vecc) xx vecb = vec0 `
Hence, `veca + vecb` is parallel to `vecb` . Thus ,
`veca + vecc = k vecb`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.3|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises|15 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is

If veca xx vecb + vecb xx vecc + vecc xx veca = 0 . Show that the vectors veca, vecb, vecc are coplanar.

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If vec a , vec b and vec c are such that veca xx vecb = vecc and vecb xx vec c = vec a , prove that veca , vecb and vecc are mutually perpendicular |vecb| =1 and |vecc| = |veca| .

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If veca+vecb=vecc and a+b=c , find the angle between veca and vecb .

If veca+vecb=vecc , and a+b=c then the angle between veca and vecb is