Home
Class 12
MATHS
If O A B C is a tetrahedron where O is t...

If `O A B C` is a tetrahedron where `O` is the origin and `A ,B ,a n dC` are the other three vertices with position vectors, ` vec a , vec b ,a n d vec c` respectively, then prove that the centre of the sphere circumscribing the tetrahedron is given by position vector `(a^2( vec bxx vec c)+b^2( vec cxx vec a)+c^2( vec axx vec b))/(2[ vec a vec b vec c])` .

Text Solution

Verified by Experts

if the centre P is with position vector `vecr`, then
`veca-vecr = vec(PA) , vecb -vecr = vec(PB) , vecc -vecr= vec(PC)`,
`where|vec(PA)| = |vec(PB)|= |vec(PC)|= |vec(OP)|= |vecr|`
consider `|veca -vecr| = |vecr|`
`or (veca -vecr) . (veca -vecr) =vecr. vecr`
`or a^(2) - 2veca. vecr + r^(2) = r^(2) or a^(2) = 2veca. vecr`
similarly, `b^(2) = 2vecb. vecr, c^(2) = 2vecc. vecr`
since `(vecb xx vecc) , (vecc xx veca) + y (vecc xx vecc) + y.0 + z.0`
` x [veca vecb vecc]`
`or (veca.vecr)/([veca vecb vecc]) = a^(2) / (2[veca vecb vecc]) `
similarly, `y = b^(2)/(2[veca vecb vecc]) and z = c^(2)/(2[veca vecb vecc])`
Hence, `vecr= (a^(2) (vecb xxvecc) + vecb^(2) (veccxxveca) +c^(2) (veca xx vecb) )/(2[vecavecbvecc])`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.3|18 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Prove that [[ vec a+ vec b, vec b+ vec c, vec c+ vec a]]=2[ [vec a, vec b, vec c]]dot

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If vec a , vec b ,a n d vec c are three non-coplanar vectors, then find the value of ( vec a .( vec bxx vec c))/( vec b .( vec cxx vec a))+( vec b .( vec cxx vec a))/( vec c .( vec axx vec b))+( vec c . ( vec bxx vec a))/( vec a . ( vec bxx vec c))

If vec a and vec b are two vectors, then prove that ( vec axx vec b)^2=|[vec a.vec a,vec a.vec b],[vec b.vec a,vec b.vec b]| .

For any four vectors, vec a , vec b , vec c and vec d prove that vec d.( vec axx( vec bxx( vec cxx vec d)))=( vec b. vec d)[ vec a \ vec c \ vec d] .

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= a. 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

( vec a+ vec b)dot( vec b+ vec c)xx( vec a+ vec b+ vec c)= a. [ vec a\ vec b\ vec c] b. 0 c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

Let vec a , vec b ,a n d vec ca n d vec a^' , vec b^' , vec c ' are reciprocal system of vectors, then prove that vec a^'xx vec b^'+ vec b^'xx vec c^'+ vec c^'xx vec a^'=( vec a+ vec b+ vec c)/([ vec a vec b vec c]) .

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec c and vec a is not a zero vector. Show that vec b= vec c dot