Home
Class 12
MATHS
vec p , vec q ,a n d vec r are three mut...

` vec p , vec q ,a n d vec r` are three mutually perpendicular vectors of the same magnitude. If vector ` vec x` satisfies the equation ` vec pxx(( vec x- vec q)xx vec p)+ vec qxx(( vec x- vec r)xx vec q)+ vec rxx(( vec x- vec p)xx vec r)=0,t h e n vec x` is given by `1/2( vec p+ vec q-2 vec r)` b. `1/2( vec p+ vec q+ vec r)""` c. `1/3( vec p+ vec q+ vec r)` d. `1/3(2 vec p+ vec q- vec r)`

Text Solution

Verified by Experts

The correct Answer is:
224

`vecp,vecq and vecp xx vecq` are perpendicular to each other. We have,
`(veca.vecp) + ( veca.vecq) vecq`
`+(veca.(vecpxxvecq))(vecpxxvecq) =veca |vecp|^(2)`
`(vecb.vecp) vecp + (vecb.vecq)vecq`
`= (vecb.(vecpxxvecq))(vecpxxvecq) =vecb |vecp|^(2)`
`(vecc.vecp) + (vecc.vecq) vecq)`
`= (vecc.(vecpxxvecq))(vecpxxvecq) =vecc|vecp|^(2)`
Hence, the required distance is `|(veca +vecb +vecc)||vecp|^(2)`
`sqrt(|veca|^(2)+|vecb|^(2)+|vecc|^(2))xx |vecp|^(2)`
` 14 xx 4^(2)= 224`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.3|18 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If vec b is not perpendicular to vec c , then find the vector vec r satisfying the equation vec rxx vec b= vec axx vec b and vec r. vec c=0.

If vec(a) , vec (b) and vec (c ) are three mutually perpendicular vectors of equal magnitude , show that , vectors vec (a) , vec (b) , vec (c ) make an equal angle with vec(a) + vec (b) + vec (c )

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of | vec a+ vec b+ vec c |

( vec a+ vec b)dot( vec b+ vec c)xx( vec a+ vec b+ vec c)= a. [ vec a\ vec b\ vec c] b. 0 c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

Let vec pa n d vec q be any two orthogonal vectors of equal magnitude 4 each. Let vec a , vec b ,a n d vec c be any three vectors of lengths 7sqrt(15)a n d2sqrt(33), mutually perpendicular to each other. Then find the distance of the vector ( vec adot vec p) vec p+( vec adot vec q) vec q+( vec adot( vec pxx vec q))( vec pxx vec q)+( vec bdot vec p) vec p( vec bdot vec q) vec q+( vec bdot( vec pxx vec q))( vec pxx vec q)+( vec cdot vec p) vec p+( vec cdot vec q) vec q+( vec cdot( vec pxx vec q))( vec pxx vec q) from the origin.

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c . Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] ; then vec d equally inclined to vec a , vec b and vec c . (a) statement 1 is true but statement 2 is false. (b) statement 2 is true but statement 1 is false. (c)both the statements are true. (d) both the statements are false.

Prove that : vec(a) . { vec(b) xx (vec(c) + vec(d))} = vec(a) . (vec(b)xx vec(c)) + vec(a) . ( vec(b) xx vec(d))