Home
Class 12
MATHS
A line l is passing through the point ve...

A line l is passing through the point `vecb` and is parallel to vector `vecc`. Determine the distance of point A(`veca)` from the line l in from `|vecb-veca+((veca-vecb)vecc)/(|vecc|^(2))vecc|or (|(vecb-veca)xxvecc|)/(|vecc|)`

Text Solution

Verified by Experts

AM = `|vec(AB)sin theta, ` where `theta` is the angle between `vec(AB) and vecc`
`and sin theta = (|vec(AB)xxvecc|)/(|vec(AB) |vecc|)`
`Rightarrow AM = |vec(AB)|(|vec(AB)xxvecc|)/(|vecAB||vecc|)=(|(vecb-veca)xxvecc|)/(|vecc|)`
Also , `vec(BM) = ((veca -vecb) . vecc) /(|vecc|) vecc/(|vecc|)`
And `vec(AM) =vec(AB) =vec(BM)`
`Rightarrow |vec(AM)|=b|vecb-veca+((veca-vecb)vecc)/(|vecc|^(2))vecc|`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.3|18 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If a ,ba n dc are three non-cop0lanar vector, non-zero vectors then the value of ( veca . veca ) vecb × vecc +( veca . vecb ) vecc × veca +( veca . vecc ) veca × vecb .

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

if veca, vecb and vecc are there mutually perpendicular unit vectors and veca ia a unit vector then find the value of |2veca+ vecb + vecc |^2

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :