Home
Class 12
MATHS
If vec e1, vec e2, vec e3a n d vec E1, ...

If ` vec e_1, vec e_2, vec e_3a n d vec E_1, vec E_2, vec E_3` are two sets of vectors such that ` vec e_idot vec E_j=1,ifi=j` and `vec e_idot vec E_j=0a n difi!=j ,` then prove that `[ (vec e_1, vec e_2 ,vec e_3)][ (vec E_1, vec E_2, vec E_3) ]=1.`

Text Solution

Verified by Experts

we know that
`[vece_(1)vece_(2)vece_(3)][vecE_(1) vecE_(2)vecE_(3)]=|{:(vece_(1).vecE_(1),vece_(1).vecE_(2),vece_(1).vecE_(3)),(vece_(2).vecE_(1),vece_(2).vecE_(2),vece_(2).vecE_(2)),(vece_(3).vecE_(1),vece_(3).vecE_(2),vece_(3).vecE_(3)):}|`
`=|{:(1,0,0),(0,1,0),(0,0,1):}|`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.3|18 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=sqrt3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b and vec c are three non-zero, non coplanar vector vec b_1= vec b-( vec b . vec a)/(| vec a|^2) vec a , vec c_1= vec c-( vec c . vec a)/(| vec a|^2) vec a+( vec b . vec c)/(| vec c|^2) vec b_1 , , c_2= vec c-( vec c . vec a)/(| vec a|^2) vec a-( vec b . vec c)/(| vec b_1|^2) , b_1, vec c_3= vec c-( vec c . vec a)/(| vec c|^2) vec a+( vec b . vec c)/(| vec c|^2) vec b_1 , vec c_4= vec c-( vec c . vec a)/(| vec c|^2) vec a=( vec b . vec c)/(| vec b|^2) vec b_1 then the set of orthogonal vectors is a. ( vec a , vec b_1, vec c_3) b. ( vec a , vec b_1, vec c_2) c. ( vec a , vec b_1, vec c_1) d. ( vec a , vec b_2, vec c_2)

For any two vectors vec ua n d vec v prove that ( vec u. vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2

If vec a and vec b are two vectors, then prove that ( vec axx vec b)^2=|[vec a.vec a,vec a.vec b],[vec b.vec a,vec b.vec b]| .

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec a dot vec x=1, vec b dot vec x=3/2,| vec x|=2. Then find the angle between vec c and vec x

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

Let vec a = vec i + vec j + vec k and let vec r be a variable vector such that vec r cdot vec i , vec r cdot vec j and vec r cdot vec k are positive integers. If vec r cdot vec a le 12 then the number of values of vec r is

Given | vec a|=| vec b|=1a n d| vec a+ vec b|=sqrt(3). If vec c is a vector such that vec c- vec a-2 vec b=3( vec axx vec b), then find the value of vec c. vec b