Home
Class 12
MATHS
If A(veca).B(vecb) and C(vecc) are three...

If A`(veca).B(vecb) and C(vecc)` are three non-collinear point and origin does not lie in the plane of the points A, B and C, then for any point `P(vecP)` in the plane of the `triangleABC` such that vector `vec(OP)` is `bot ` to plane of `trianglABC`, show that `vec(OP)=([vecavecbvecc] (vecaxxvecb+vecbxxvecc+veccxxveca))/(4Delta^(2))`

Text Solution

Verified by Experts

P lies in the plane of A,B and C , therefore,
`vec(AP).(vec(Bp) xx vec(CP))=0`
`Rightarrow (vecp.veca).(veccxxvecp+vecpxxvecb+vecbxxvecc)=0`
`or 0 +0+vecp . (vecbxxvecc)-veca.(veccxxvecp)`
`-veca.(vecpxxvecb)-veca.(vecbxxvecc)=0`
`or vecp . (vecbxxvecc)=vecp.(veccxxveca) +vecp.(vecaxxvecb)`
`-veca . (vecb xx vecc) =0`
`or vecp.(vecbxxvecc+veccxxveca+vecaxxvecb) = [veca vecbvecc]`
now vector perependicular to the plane ABC is
`(vecb xx vecc +vecc xx veca +veca xxvecb)`
Let ` vec(OP) = lambda(veca xx vecb + vecb +vecb xx vecc +vecc xx veca)`
since `vec(OP).(vecaxxvecb+vecbxxvecc+veccxxveca)=[veca vecbvecc]`
`or ([veca vecb vecc])/(4Delta^(2))`
`vec(OP) = ([veca vecb vecc] (veca xxvecb + vecb xxvecc +veccxxveca))/(4Delta^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.3|18 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

A(veca),B(vecb),C(vecc) are the vertices of the triangle ABC and R(vecr) is any point in the plane of triangle ABC , then vec r.(vecaxxvecb+vecbxxvecc+veccxxveca) is always equal to

D, E, F are the midpoints of the sides bar(BC), bar(CA) " and " bar(AB) respectively of the triangle ABC. If P is any point in the plane of the triangle, show that vec(PA)+vec(PB)+vec(PC)=vec(PD)+vec(PE)+vec(PF) .

If veca, vecb and vecc are the position vectors of the vertices A,B and C. respectively , of triangleABC . Prove that the perpendicualar distance of the vertex A from the base BC of the triangle ABC is (|vecaxxvecb+vecbxxvecc+veccxxveca|)/(|vecc-vecb|)

If vec a , vec b and vec c are three non-zero vectors, no two of which are collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c| .

The points (3, -2) (-2, 8) and (0, 4) are three points in a plane. Show that these points are collinear.

If the position vectors of the points P and Q are 2hat(i)+hat(k) " and " -3hat(i)-4hat(j)-5hat(k) respectively, then vector vec(OP) is -

Let A(z_1),B(z_2) and C(z_3) be the three points in Argands plane The point A B and C are collinear if

Let vec a , vec b ,a n d vec c be non-coplanar unit vectors, equally inclined to one another at an angle theta then [ veca vecb vecc ] in terms of θ is equal to :

A(1,2) and B(7,10) are two given points on the xy plane, for a point P(x,y) in the xy - plane such that angleAPB=60^(@) , area of the triangle APB is maximum , then P is lying on-

Using vector method show that the points A(-5,7), B(-4,5) and C(1, -5) are collinear.