Home
Class 12
MATHS
If veca, vecb, vecc are three given non-...

If `veca, vecb, vecc` are three given non-coplanar vectors and any arbitrary vector `vecr` in space, where `Delta_(1)=|{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|,Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vecc ,vecc.vecc):}|`
`Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|, Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|,`` "then prove that " vecr=(Delta_(1))/Deltaveca+(Delta_(2))/Deltavecb+(Delta_(3))/Deltavecc`

Text Solution

Verified by Experts

`Delta_(1)= |{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|=[vecrvecb vecc] [veca vecb vecc]`
`Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vecc,vecc.vecc):}|=[vecrveccveca] [veca vecb vecc]`
`Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|= [vecrveca vecb][veca vecb vecc]`
`Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|=[vecavecb vecc]^(2)`
Now `vecr =xveca + yvecb=zvecc`
taking dot product with `veca xx vecb`, we have
`vecr.(vecaxxvecb)=zvecc.(vecaxxvecb)`
`Rightarrow z= ([vecrveca vecb])/([veca vecbvecc])=Delta_(3)/Delta`
similarly,` x = Delta_(1)/Delta and y = Delta_(2)/Delta`
`Rightarrow vecr= Delta_(1)/Deltaveca+Delta_(2)/Deltavecb+Delta_(3)/Deltavecc`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.3|18 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Prove that [veclvecmvecn][vecavecbvecc]=|{:(vecl.veca,vecl.vecb,vecl.vecc),(vecm.veca,vecm.vecb,vecm.vecc),(vecn.veca,vecn.vecb,vecn.vecc):}|

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If vectors veca, vecb and vecc are coplanar, show that |{:(veca, vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc):}|=vec0

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca=hati+hatj+hatk,hatb=hati-hatj+hatk,vecc=hati+2hatj-hatk , then find the value of |{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

If veca, vecb and vecc be three non-coplanar vectors and a',b' and c' constitute the reciprocal system of vectors, then prove that i. vecr=(vecr.veca')veca+(vecr.vecb')vecb+(vecr.vecc')vecc ii. vecr= (vecr.veca)veca'+(vecr.vecb)vecb' + (vecr.vecc) vecc'

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

vec a , vec ba n d vec c are three non-coplanar ,non-zero vectors and vec r is any vector in space, then ( veca × vecb )×( vecr × vecc )+( vecb × vecc )×( vecr × veca )+( vecc × veca )×( vecr × vecb ) is equal to