Home
Class 12
MATHS
Let vecr be a non - zero vector satisfyi...

Let `vecr` be a non - zero vector satisfying `vecr.veca = vecr.vecb =vecr.vecc =0` for given non- zero vectors `veca, vecb and vecc`
Statement 1: `[ veca - vecb vecb - vecc vecc- veca] =0`
Statement 2: `[veca vecb vecc] =0`

A

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B

B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C

C. Statement 1 is true and Statement 2 is false

D

D. Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
b

`vecr.veca= vecr.vecb= vecr.vecc=0 ` only if `veca,vecb and vecc` are coplanar, thus,
`[veca vecb vecc] =0`
Hence, statement 2 is true
Also `[veca -vecb vecb-vecc vecc-veca]=0 " even " if [veca vecb vecc] ne 0`
Hence, statement 2 is not the correct explanation for statement 1.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises MCQ|134 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If vecx.veca=0 vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |veca||vecb||vecc| holds if and only if

Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |veca|= sqrt3 and |vecb| = sqrt2 , then

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

If three unit vectors veca, vecb and vecc " satisfy" veca+vecb+vecc= vec0 . Then find the angle between veca and vecc .

If three unit vectors veca, vecb and vecc " satisfy" veca+vecb+vecc= vec0 . Then find the angle between vecb and vecc .

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]