Home
Class 12
MATHS
Statement 1: vecA=2hati + 3hatj + 6hatk ...

Statement 1: `vecA=2hati + 3hatj + 6hatk , vecB=hati + hatj - 2hatk and vecC=hati + 2hatj + hatk` then
`|vecAxx (vecAxx(vecAxxvecB)).vecC|= 243`
Statement 2: `|vecAxx(vecAxx(vecAxxvecB)).vecC|=|vecA|^(2)|[vecA vecB vecC]|`

A

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B

B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C

C. Statement 1 is true and Statement 2 is false

D

D. Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
d

`vecA xx (vecA.vecB) vecA- (vecA.vecA) vecB) .vecC`
`(=underset("zero")ubrace(vecAxx(vecA.vecB)vecA)-(vecA.vecA)xxvecB).vecC`
`=-|vecA|^(2)[vecA vecB vecC]`
now ` |vecA|^(2) = 4+9 + 36 = 49`
`[vecA vecB vecC]=|{:(2,3,6),(1,1,-2),(1,2,1):}|`
2( 1+4) -1 (3 -12) +1 (-6-6)
= 10 +9 -12 =7
`|vecA|^(2) [vecAvecBvecC]|= 49xx 7 = 343`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises MCQ|134 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc= zhati + xhatj+ yhatk , " then " vecaxx (vecbxx vecc) is

If vecA= 5hati+6hatj+3hatk and vecB=6hati-2hatj-6hatk , then

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

Given two vectors veca= -hati +hatj + 2hatk and vecb =- hati - 2 hatj -hatk find |vec a xx vec b|

vecA =2hati+3hatj+4hatk and vecB=hati-hatj+hatk are two vectors. Find vecAxxvecB .

If veca=hati-2hatj+3hatk and vecb=-2hati+hatj-2hatk , then the value of |veca xx vecb| is -

vecA= hati & vecB= hatj+hatk , then find out vecA.vecB ?