Home
Class 12
MATHS
Statement 1: vec a , vec b ,a n d vec c...

Statement 1: ` vec a , vec b ,a n d vec c` are three mutually perpendicular unit vectors and ` vec d` is a vector such that ` vec a , vec b , vec ca n d vec d` are non-coplanar. If `[ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c`. Statement 2: `[ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]`; then `vec d` equally inclined to `vec a`,`vec b` and `vec c`.

A

Both the statements are true and statement 2 is the correct explanation for statement 1.

B

Both statements are true but statement 2 is not the correct explanation for statement 1.

C

Statement 1 is true and Statement 2 is false

D

Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
b

Let `vced = lamda_(1) veca + lambda_(2) vecb +lambda_(3) vecc`
`Rightarrow [vecdvecavecb] = lamda_(3)[veccvecavecb]Rightarrowlambda_(3)=1`
`[veccveca vecb] =1` (because `veca vecb and vecc` are three mutually perpendicular unit vectors)
similarly, `lambda_(1) = lambda_(2) =1`
`Rightarrow vecd =veca +vecb +vecc`
Hence, statement 1 and statement 2 are correct , but statement 2 does not explain statement 1 as it does not give the value of dot products.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises MCQ|134 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

vec a , vecb , vec c are three mutually perpendicular unit vectors then |vec a + vec b + vec c| is equal to

( vec a+ vec b)dot( vec b+ vec c)xx( vec a+ vec b+ vec c)= a. [ vec a\ vec b\ vec c] b. 0 c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

If vec a , vec b and vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c).[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

For any four vectors, vec a , vec b , vec c and vec d prove that vec d.( vec axx( vec bxx( vec cxx vec d)))=( vec b. vec d)[ vec a \ vec c \ vec d] .

If vec(a) , vec (b) and vec (c ) are three mutually perpendicular vectors of equal magnitude , show that , vectors vec (a) , vec (b) , vec (c ) make an equal angle with vec(a) + vec (b) + vec (c )

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec ba n d vec c are non-coplanar vectors, prove that the four points 2 vec a+3 vec b- vec c , vec a-2 vec b+3 vec c ,3 vec a+ 4 vec b-2 vec ca n d vec a-6 vec b+6 vec c are coplanar.

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of | vec a+ vec b+ vec c |