Home
Class 12
MATHS
Consider a vector vecc Prove that, ve...

Consider a vector `vecc `
Prove that, `vecc= (hati.vecc)hati+ (hatj .vecc) hatj + (hatk. vecc)hatk`

Text Solution

Verified by Experts

The correct Answer is:
a

Statement 2 is true (see properties of dot product)
Also ` (hatixxveca) .vecb=hati. (veca xxvecb)`
`Rightarrow veca xxvecb = (hati. (vecaxxvecb))hati+ (hatj. (vecaxxvecb))hatj + (hatk. (veca xx vecb))hatk`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises MCQ|134 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Consider three vectors vecA =hati+hatj-2hatk,vecB=hati-hatj+hatk and vecC =2hati-3hatj+4hatk . A vector vecX of the form alpha vecA+betavecB(alpha and beta are numbers ) is perpendicular to vecC . The ratio of alpha and beta is

A vector (vecd) is equally inclined to three vectors veca= hati - hatj + hatk, vecb = 2 hati + hatj and vecc = 3hatj - 2hatk let vecx ,vecy, vecz be three in the plane of veca, vecb ; vecb, vecc; vecc, veca respectively, then

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(1).vecb is equal to (A) -41 (B) -41//7 (C) 41 (D)287

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

Statement 1: vecA=2hati + 3hatj + 6hatk , vecB=hati + hatj - 2hatk and vecC=hati + 2hatj + hatk then |vecAxx (vecAxx(vecAxxvecB)).vecC|= 243 Statement 2: |vecAxx(vecAxx(vecAxxvecB)).vecC|=|vecA|^(2)|[vecA vecB vecC]|

Find vecc , when vecaxxvecc=vecb and veca.vecc= 3 where veca= hatr+hatj+hatk and vecb= hatj-hatk .

Find the value of lambda if three vectors veca= 2hati-hatj+hatk,vecb= hati+2hatj-3hatk and vecc= 3hati+lambdaj+5hatk are coplanar.