Home
Class 12
MATHS
Ab, AC and AD are three adjacent edges o...

Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector `veca`. The vector of the faces containing vertices A, B , C and A, B, D are `vecb and vecc`, respectively , i.e. `vec(AB) xx vec(AC)=vecb and vec(AD) xx vec(AB) = vecc` the projection of each edge AB and AC on diagonal vector `veca is |veca|/3`
vector `vec(AB)` is

A

`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2)`

B

`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2) + (3(vecbxxveca))/|veca|^(2)`

C

`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2) -(3(vecbxxveca))/|veca|^(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
b

`veca=vec(AP)=vec(AB)+vec(AC)+vec(AD)`
`vec(AB)xxvec(AC)=vecb`
`vec(AD)xxvec(AB)=vecc`
`vec(AB).veca/(|veca|)=|veca|/3 Rightarrowvec(AB).veca= (|veca|^(2))/3`
`vec(AB).veca/(|veca|)=|veca|/3 Rightarrowvec(AC).veca= (|veca|^(2))/3`
` (vec(AB) xx vec(AC))xxveca = vecb xxveca`
`vec(AC)-vec(AB)=3(vecbxxveca)/(|veca|^(2))`
`|veca|^(2)=vec(AB).veca+vec(AC).veca+vec(AD).veca`
`(|veca|^(2))/3=vec(AD).veca`
`(vec(AD)xxvec(AB))xxveca=veccxxveca`
`vec(AB)- vec(AD) = 3 (vecc xx veca)/(|veca|^(2))`
Now from (ii) and (iii), we get `vec(AC) and vec(AD)` as
`vec(AC)=1/3veca+ (vecaxx(vecb xx vecc))/(|veca|^(2))+(3(vecbxxveca))/(|veca|^(2))`
` vec(AD)= 1/3veca+ (vecaxx(vecb-vecc))/(|veca|^(2))- (3(vec cxxveca))/(|veca|^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Martrix - match type|10 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Reasoning type|8 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector veca . The vector of the faces containing vertices A, B , C and A, B, D are vecb and vecc , respectively , i.e. vec(AB) xx vec(AC) and vec(AD) xx vec(AB) = vecc the projection of each edge AB and AC on diagonal vector veca is |veca|/3 vector vec(AD) is

If vec a , vec b and vec c are such that veca xx vecb = vecc and vecb xx vec c = vec a , prove that veca , vecb and vecc are mutually perpendicular |vecb| =1 and |vecc| = |veca| .

If vec(a) , vec(b)and vec(a) xx vec(b) are three unit vectors , find the angles beween the vectors vec(a) and vec(b)

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Let vec(a),vec(b),vec (c ) be the positions vectors of the vertices of a triangle , prove that the area of the triangle is 1/2| vec(a) xx vec(b) + vec(b) xx vec(c)+ vec(c)xx vec(a)|

If two vectors vec(a) and vec (b) are such that |vec(a) . vec(b) | = |vec(a) xx vec(b)|, then find the angle the vectors vec(a) and vec (b)

For any two vectors veca and vec b show that |vec a.vec b|le |vec a|.|vecb|

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb, vecc and vecd are distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecb-vecc)ne 0

CENGAGE PUBLICATION-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Comprehension type
  1. If vecx xx vecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  2. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  3. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  4. Given two orthogonal vectors vecA and vecB each of length unity. Let v...

    Text Solution

    |

  5. Given two orthogonal vectors vecA and VecB each of length unity. Let v...

    Text Solution

    |

  6. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  7. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  8. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  9. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  10. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  11. Consider a triangular pyramid ABCD the position vectors of whose agula...

    Text Solution

    |

  12. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |

  13. Vertices of a parallelogram taken in order are A( 2,-1,4)B(1,0,-1...

    Text Solution

    |

  14. Vertices of a parallelogram taken in order are A, ( 2,-1,4) , B (1,0,-...

    Text Solution

    |

  15. Let vecr be a position vector of a variable point in Cartesian OXY pla...

    Text Solution

    |

  16. Let vecr be a position vector of a variable point in Cartesian OXY pla...

    Text Solution

    |

  17. Let vecr be a position vector of a variable point in Cartesian OXY pla...

    Text Solution

    |

  18. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagona...

    Text Solution

    |

  19. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagona...

    Text Solution

    |

  20. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagona...

    Text Solution

    |