Home
Class 12
MATHS
Find the value of lambda if the vectors ...

Find the value of `lambda` if the vectors `veca` and `vecb` are perpendicular. where, `veca`= `2hati+lambda hatj + hatk` and `vecb` = `hati-2 hatj + 3hatk`

Text Solution

Verified by Experts

The correct Answer is:
` a to q' b to s ; c to p ; d to r`

a. `|veca + vecb + vecc| = sqrt6`
`Rightarrow veca^(2)+vecb^(2)+vecc^(2)+ 2veca.vecb+ 2vecb.vecc + 2vecc.veca=6`
`|veca|=1`
b. `veca` is perpendicular to `vecb + vecc`
`Rightarrow veca. vecb+veca.vecc=0`
`vecb` is perpendicular to `veca +vecb`
`Rightarrow vecb.vecb + vecb.vecc=0`
`vecc` is perpendicular to `veca + vecb`
`Rightarrow vecc. veca + veca .vecc.vecb=0`
Form (i), (ii) and (iii), we get
`veca.vecb = vecb .vecc =vecc.veca=0`
` |veca+vecb +vecc|=7`
=c. `(veca.vecc)(vecb.vecd)-(vecb.vecc)(veca.vecd)=21`
d. we know that `[veca xx vecb vecb xx vecc vecc xx veca] = [veca vecb vecc]^(2)`
`and [veca vecbvecc]^(2)=|{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|=|{:(4,2,2),(2,4,2),(2,2,4):}|`
32
`[veca vecb vecc] = 4sqrt2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Comprehension type|27 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector which is perpendicular to both vecA = 3hati + hatj + 2hatk and vecB = 2hati - 2hatj + 4hatk .

Find the value of lambda if three vectors veca= 2hati-hatj+hatk,vecb= hati+2hatj-3hatk and vecc= 3hati+lambdaj+5hatk are coplanar.

Find |vecaxxvecb| , if veca=2hati-7hatj+7hatk and vecb=3hati-2hatj+2hatk

If vecA= 5hati+6hatj+3hatk and vecB=6hati-2hatj-6hatk , then

Find the unit vector perpendicular to both the vectors vecA=(2hati+2hatj+2hatk) and vecB=(hati-hatj+2hatk) .

Find a unit vector which is perpendicular to both vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk .

A unit vector which is perpendicular to both the vectors veca=hati-hatj-hatk and vecb=hati+hatj+hatk is -

Find the angle between the two vectors vecA = hati + 2hatj + 3hatk and vecB = 2hati+ hatj + 4hatk .

Find the unit vector which is perpendicular to both veca = 2hati + 3hatj - hatk and vecb = 3hati - hatj + hatk and also find the angle between them.

Find a unit vector parallel to the vector veca+vecb where veca=3hati+2hatj+2hatk and vecb=hati+2hatj-2hatk .