Home
Class 12
MATHS
find |vec x| , if for a unit vector v...

find `|vec x|` , if for a unit vector `vec a, (vec x- vec a)( vec x + vec a)`=12

Text Solution

Verified by Experts

The correct Answer is:
`a to r ; b to s ; c to q ; d to p`

`[veca xx vecb vecb xx vecc vecc xx veca]=36`
`or [veca vecb vecc]=6`
` Rightarrow` volume of terthedron formed by vectors.
`veca,vecb and vecc is 1/6 [ veca vecb vecc] =1`
`[veca +vecb vecb +vecc vecc +veca] =2 [veca vecb vecc] =12`
`veca-vecb,vecb-vecc and vecc-veca` are coplanar,
`Rightarrow [veca-vecb vecb -veccvecc-veca]=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Comprehension type|27 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If vec a and vec b are unequal unit vectors such that ( vec a- vec b)xx[( vec b+ vec a)xx(2 vec a+ vec b)]= vec a+ vec b , then angle theta between vec aa n d vec b is 0 b. pi//2 c. pi//4 d. pi

If vec p is a unit vector and (vec x- vecp).(vec x+ vecp) = 8 then find |vec x|

If vec a, vec b,vec c and vec d are unit vectors such that (vec a xx vec b) . vec c xx vec d= 1 and vec a.vec c =1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c ,vec d are non -coplanar c) vec b, vecd are non parallel d) vec a , vec d are parallel and vec b, vec c are parallel

Let vec aa n d vec b be two non-collinear unit vector. If vec u= vec a-( vec adot vec b) vec ba n d vec v= vec axx vec b ,t h e n| vec v| is a. | vec u| b. | vec u|+| vec udot vec a| c. | vec u|+| vec udot vec b| d. | vec u|+ hat udot| vec a+ vec b|

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec a dot vec x=1, vec b dot vec x=3/2,| vec x|=2. Then find the angle between vec c and vec x

If vec a and vec b are unit vectors such that ( vec a+ vec b).[(2 vec a+3 vec b)xx(3 vec a-2 vec b)]=0 , then angle between veca and vec b is

If vec a , vec b , vec c are unit vectors such that vec a. vec b=0= vec a. vec c and the angle between vec b and vec c is pi/3, then find the value of | vec axx vec b- vec axx vec c| .

If vec a and vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a and vec b .

Let vec u and vec v be unit vectors such that vec uxx vec v+ vec u= vec w and vec wxx vec u= vec v . Find the value of [ vec u \ vec v \ vec w] .

If vec a , vec b ,and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)), vec b and vec c are non-parallel, then prove that the angle between vec a and vec b, is 3pi//4.