Home
Class 12
MATHS
Let vecA , vecB and vecC be vectors of l...

Let `vecA , vecB and vecC` be vectors of legth , 3,4and 5 respectively. Let `vecA` be perpendicular to `vecB + vecC, vecB " to " vecC + vecA and vecC " to" vecA + vecB` then the length of vector `vecA + vecB+ vecC` is __________.

Text Solution

Verified by Experts

The correct Answer is:
`5sqrt2`

Given that `|vecA|=3, |vecB|=4, |vecC|=5`
`vecAbot (vecB + vecC) Rightarrow vecA. (vecB +vecC) =0`

`Rightarrow vecA.vecB + vecA.vecC=0`
` vecB bot (vecC +vecA)RightarrowvecB.(vecC+vecA_=0`
`Rightarrow vecB.vecC+vecB.vecA=0`
`vecCbot (vecA+vecB) RightarrowvecC. (vecA+vecB)=0`
` Rightarrow vecC.vecA+vecC.vecdB=0`
Adding (i), (ii) and (iii) we get
`2(vecA.vecBr+vecB.vecC+vecC.vecA)=0`
Now , `|vecA + vecB + vecC|^(2)`
`(vecA + vecB+vecC).(vecA + vecB+vecC)`
`|vecA|^(2)+|vecB|^(2)+|vecC|^(2)`
`+2(vecA.vecB + vecB.vecC+vecC.vecA)`
9+16+25+0
= 50
`|vecA + vecB +vecC|= 5sqrt2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise single correct answer type|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective type|19 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Knowledge Check

  • veca,vecb and vecc are three orthogonal vectors with magnitudes 3, 4 and 12 respectively. The value of abs(veca+vecb+vecc) =

    A
    19
    B
    96
    C
    13
    D
    15
  • Similar Questions

    Explore conceptually related problems

    If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

    Let veca , vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=3, |vecb|=4, |vecc| = 5 , the find the length of veca +vecb + vecc .

    Let veca ,vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=2, |vecb|=3, |vecc| = 6 , the find the length of veca +vecb + vecc .

    If veca xx vecb + vecb xx vecc + vecc xx veca = 0 . Show that the vectors veca, vecb, vecc are coplanar.

    Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a non -zero , which is perpendicular to (veca + vecb + vecc). Now vecd = (veca xx vecb) sin x + (vecb xx vecc) cos y + 2 (vecc xx veca) . Then

    Let veca, vecb and vecc be the three vectors having magnitudes, 1,5 and 3, respectively, such that the angle between veca and vecb "is " theta and veca xx (veca xxvecb)=vecc . Then tan theta is equal to

    Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplanar. If vecc is pependicular to veca .Find vecc .