Home
Class 12
MATHS
A unit vector coplanar with veci + vecj ...

A unit vector coplanar with `veci + vecj + 2veck and veci + 2 vecj + veck` and perpendicular to `veci + vecj + veck ` is _______

Text Solution

Verified by Experts

The correct Answer is:
`(hatj -hatk)/(sqrt2)or(-hatj+hatk)/(sqrt2)`

Let `xhati + yhatj +zhatk` be a unit vector coplanar with
`hati + hatj + 2hatk and hati + 2hatj +hatk` and also perpendicular to `hati + hatj + hatk` . Then
`|{:(x,y,z),(1,1,2),(1,2,1):}|=0`
`or -3x+ y+z=0`
` and x+y+z=0`
Solving the above by cross - product method , we get
`x/0=y/4=z/(-4)orx/0=y/1=z/(-1)=lambda(say)`
`Rightarrow x=0,y=lamda,z=-lambda`
As `xhati+yhatj+zhatk` is a unit vector , we have
` 0 + lambda^(2) +lambda^(2) =1 `
` or lamda^(2) = 1/2 or lambda= +- 1/sqrt2`
Required vector = `(hatj- hatk)/ sqrt2 or (-hatj +hatk)/sqrt2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise single correct answer type|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective type|19 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Let vecx, vecy and vecz be three vectors each of magnitude sqrt2 and the angle between each pair of them is pi/3 if veca is a non-zero vector perpendicular to vecx and vecy xx vecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx , then

If vec a , vec b , vec c are mutually perpendicular unit vectors, find |2 vec a+ vec b+ vec c|dot

A vector of magnitude sqrt(2) coplanar with the vector vec a= hat i+ hat j+2 hat k and vec b= hat i+2 hat j+ hat k , and perpendicular to the vector vec c= hat i+ hat j+ hat k , is a. - hat j+ hat k b. hat i- hat k c. hat i- hat j d. hat i- hat j

Find the value of lambda so that the plane vecr. (veci + 2vecj + 3veck) = 7 and vecr.(lambdaveci + 2vecj - 7veck) = 26 are perependicular to each other.

The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat k and hat i+2 hat j+ hat k , and perpendicular to vector hat i+ hat j+ hat k , is/are a. hat j- hat k b. - hat i+ hat j c. hat i- hat j d. - hat j+ hat k

Show that the vectors 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors (where vec a , vec b , vec c are non-coplanar vectors)

Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplanar. If vecc is pependicular to veca .Find vecc .

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other then the angle between veca and vecb is

veca =2veci+3vecj-2veck vecb =4veci-vecj+5veck Find veca xx vecb

Find a unit vector perpendicular to each of the vector vec a+ vec b and vec a- vec b , where vec a=3 hat i+2 hat j+2 hat k and vec b= hat i+2 hat j-\ 2 hat k