Home
Class 12
MATHS
Find a unit vector perpendicular to each...

Find a unit vector perpendicular to each of the vector ` vec a+ vec b` and ` vec a- vec b` , where ` vec a=3 hat i+2 hat j+2 hat k` and ` vec b= hat i+2 hat j-\ 2 hat k`

Text Solution

Verified by Experts

The correct Answer is:
`veca`

Let `vecalpha, vecbeta,vecgamma` be any three mutually perpendicular non-coplanar, unit vectors and `veca` be any vector, then
`veca= (veca.vecalpha)vecalpha+ (veca.vecbeta)+(veca.vecgamma)vecgamma`
Here `vecb, vecc` are two mutually perpendicular vectors,
therefore, `vecb , vecc and (vecb xx vecc)/(|vecb xx vecc|)` are three mutually
Perpendicular non-coplanaar unit vectors. Hence
`veca=(veca .vecb)vecb+(veca.vecc)vecc`
`+(veca.(vecbxxvecc)/(|vecb xx vecc|))(vecb xx vecc)/(|vecb xx vecc|)`
`(veca.vecb)vecb+(veca.vecc)vecc`
`+(veca.(vecbxxvecc))/(|vecb xx vecc|^(2))(vecbxxvecc)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise single correct answer type|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective type|19 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to each of the vectors ( vec a+ vec b) and ( vec a- vec b) , where vec a= hat i+ hat j+ hat k , vec b= hat i+2 hat j+3 hat k .

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec (a) - vec(b) where vec(a) = 3 hat (i) + 2 hat (j) + 2 hat (k) and vec(b) = hat (i) + 2 hat (j) - 2 hat (k) .

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat kdot

In each of the following find a unit a vector perpendicular to both vec (a) and vec (b) vec(a) = 2 hat (i) - 2 hat (j) + hat (k) and vec (b) = hat (i) + 2 hat (j) - 2 hat (k)

Find vec adot vec b when: vec a= hat j- hat k\ a n d\ vec b=2 hat i+3 hat j-2 hat k

Find a unit vector perpendicular to both the vector vec(a) = 2 hat(i) + hat(j) - 2 hat(k) and vec(b) = 3 hat (i) - hat (j) + hat (k)

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the scalar and vector projection of vec(b) on a vec (a) where vec(a) = hat (i) + 2 hat (j) + 2 hat (k) and vec (b) = hat (j) + 2 hat (k)

Find the vector of magnitude 3, bisecting the angle between the vectors vec a=2 hat i+ hat j- hat k and vec b= hat i-2 hat j+ hat kdot

if vec a = 2 hat i- 3 hat j+hat k and vec b = hat i+2 hat j- 3hat k then vec aXvec b is