Home
Class 12
MATHS
vecp, vecq and vecr are three mutually p...

`vecp, vecq and vecr` are three mutually prependicular vectors of the same magnitude . If vector `vecx` satisfies the equation `vecp xx((vecx-vecq) xxvecp)+ vecq xx ((vecx -vecr)xxvecq)+vecrxx((vecx-vecp)xxvecr)=vec0 " then " vecx` is given by

A

A. `1/2(vecp + vecq-2vecr)`

B

B. `1/2(vecp + vecq+vecr)`

C

C. `1/3(vecp + vecq+vecr)`

D

D. `1/3(2vecp + vecq-vecr)`

Text Solution

Verified by Experts

The correct Answer is:
b

As `vecp, vecq and vecr` are three mutually pependicular vectors of same magnitude , so let us consider.
`vecp=ahati,vecq=ahatj,vecr=ahatk`
Also let ` vecx = x_(1)hati + y_(1)hatj + z_(1)hatk`
Given that `vecx` satisfies the equation
` vecP xx [(vecx-vecq)xxvecp]=vecpxx[(vecx-vecr)xx vecq]`
`+vecr xx[(vecx-vecp)xxvecr]=0`
Now `vecpxx[(vecx-vecq)xx vecp] = vecp xx [vecx xx vecp-vecqxx vecp]`
`=vecpxx (vecx xx vecp) -vecp xx(vecq xx vecp)`
`(vecp.vecp)vecx.(vecp.vecx) vecp-(vecp.vecp) vecq + (vecp.vecq) vecp `
`a^(2) vecx-a^(2)xhati - a_(3)hatj+0`
Similarly
`vecqxx[(vecx-vecr)xx vecq] =a^(2)vecx-a^(2)x-a^(2)y_(1)hatj -a^(3)hatk`
`and vecrxx[(vecx- vecp) xx vecr] =a^(2)vecx-a^(2)z_(1)hatk -a_(3)hati`
Substituting these values in the equations, we get
`3a^(2)vecx-a^(2)(x_(1)hati +y_(1)hatj+z_(1)hatk)`
`-a^(2)(ahati +ahatj +ahatk)=0`
`or 3a^(2)vecx -a^(2)vecx-a^(2)(p+q+r) =vec0`
`or 2a^(2)vecx = (vecp +vecq +vecr)a^(2)`
`or vecx= 1/2(vecp +vecq +vecr) a^(2)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise True and false|3 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
CENGAGE PUBLICATION-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |v...

    Text Solution

    |

  2. If vec a , vec ba n d vec c are three non coplanar vectors, then ( ...

    Text Solution

    |

  3. vecp, vecq and vecr are three mutually prependicular vectors of the sa...

    Text Solution

    |

  4. Let veca = 2hati + hatj - 2hatk, and vecb = hati+ hatj if c is a vect...

    Text Solution

    |

  5. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  6. If the vectors vec a , vec b ,a n d vec c form the sidesB C ,C Aa n d...

    Text Solution

    |

  7. Let vectors vec a , vec b , vec c ,a n d vec d be such that ( vec axx...

    Text Solution

    |

  8. If vec a , vec ba n d vec c are unit coplanar vectors, then the sc...

    Text Solution

    |

  9. If hat a , hat b ,a n d hat c are unit vectors, then | hat a-hat b|^2...

    Text Solution

    |

  10. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  11. Let vec V=2 hat i+ hat j- hat ka n d vec W= hat i+3 hat kdot If vec ...

    Text Solution

    |

  12. Find the value of a so that the volume of the parallelepiped formed ...

    Text Solution

    |

  13. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  14. The unit vector which is orthogonal to the vector 3 hat i+2 hat j+6 ...

    Text Solution

    |

  15. If veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  16. Let veca=hati + 2hatj +hatk, vecb=hati - hatj +hatk andvecc= hati - ha...

    Text Solution

    |

  17. Let two non-collinear unit vector hat a a n d hat b form an acute a...

    Text Solution

    |

  18. If veca, vecb, vecc and vecd are unit vectors such that (vecaxx vecb)....

    Text Solution

    |

  19. Two adjacent sides of a parallelogram A B C D are given by vec A B...

    Text Solution

    |

  20. Let P ,Q ,R and S be the points on the plane with position vectors ...

    Text Solution

    |