Home
Class 12
MATHS
Which of the following expressions are...

Which of the following expressions are meaningful? a. ` vec u.(vec vxx vec w)` b. `vec u. vec v. vec w` c. `( vec u vec v). vec w` d. ` vec uxx( vec v. vec w)`

A

`vecu.(vecvxx vecw)`

B

`(vecu.vecv).vecw`

C

`(vecu.vecv)vecw`

D

`vecu xx (vecv . Vecw)`

Text Solution

Verified by Experts

The correct Answer is:
a,c

Dot product of two vectors gives a scalar quantity.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise single correct answer type|28 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

For three vectors vec u , vec va n d vec w which of the following expressions is not equal to any of the remaining three ? a. vec udot( vec vxx vec w) b. ( vec vxx vec w)dot vec u c. vec vdot( vec uxx vec w) d. ( vec uxx vec v)dot vec w

If vec x+ vec cxx vec y= vec aa n d vec y+ vec cxx vec x= vec b ,w h e r e vec c is a nonzero vector, then which of the following is not correct? a. vec x=( vec bxx vec c+ vec a+( vec c dot vec a) vec c)/(1+ vec c dot vec c) b. vec x=( vec cxx vec b+ vec b+( vec c dot vec a) vec c)/(1+ vec c dot vec c) c. vec y=( vec axx vec c+ vec b+( vec c dot vec b) vec c)/(1+ vec c dot vec c) d. none of these

Let the pairs a , b,and c ,d each determine a plane. Then the planes are parallel if a. ( vec axx vec c)xx( vec bxx vec d)= vec0 b. ( vec axx vec c).( vec bxx vec d)= vec0 c. ( vec axx vec b)xx( vec cxx vec d)= vec0 d. ( vec axx vec b).( vec cxx vec d)= vec0

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

If vec a , vec b ,a n d vec c are three non-coplanar vectors, then find the value of ( vec a .( vec bxx vec c))/( vec b .( vec cxx vec a))+( vec b .( vec cxx vec a))/( vec c .( vec axx vec b))+( vec c . ( vec bxx vec a))/( vec a . ( vec bxx vec c))

Let vec u and vec v be unit vectors such that vec uxx vec v+ vec u= vec w and vec wxx vec u= vec v . Find the value of [ vec u \ vec v \ vec w] .

If vec a , vec b and vec c are three non-zero, non coplanar vector vec b_1= vec b-( vec b . vec a)/(| vec a|^2) vec a , vec c_1= vec c-( vec c . vec a)/(| vec a|^2) vec a+( vec b . vec c)/(| vec c|^2) vec b_1 , , c_2= vec c-( vec c . vec a)/(| vec a|^2) vec a-( vec b . vec c)/(| vec b_1|^2) , b_1, vec c_3= vec c-( vec c . vec a)/(| vec c|^2) vec a+( vec b . vec c)/(| vec c|^2) vec b_1 , vec c_4= vec c-( vec c . vec a)/(| vec c|^2) vec a=( vec b . vec c)/(| vec b|^2) vec b_1 then the set of orthogonal vectors is a. ( vec a , vec b_1, vec c_3) b. ( vec a , vec b_1, vec c_2) c. ( vec a , vec b_1, vec c_1) d. ( vec a , vec b_2, vec c_2)

Prove that [[ vec a+ vec b, vec b+ vec c, vec c+ vec a]]=2[ [vec a, vec b, vec c]]dot

[( vec axx vec b)xx( vec bxx vec c)( vec bxx vec c)xx( vec cxx vec a)( vec cxx vec a)xx( vec axx vec b)] is equal to (where vec a , vec ba n d vec c are nonzero non-coplanar vector) a. [ vec a vec b vec c]^2 b. [ vec a vec b vec c]^3 c. [ vec a vec b vec c]^4 d. [ vec a vec b vec c]

If vec a is parallel to vec bxx vec c , then ( vec axx vec b) . ( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these