Home
Class 12
MATHS
veca and vecb are two non - collinear un...

`veca and vecb` are two non - collinear unit vectors, and `vecu = veca- (veca.vecb)vecb and vecv = veca xx vecb. " then " |vecv|` is

A

`|vec u|+ vecu. (veca x vecb)`

B

`|vecu|+ |vecu. veca|`

C

`|vecu| + |vecu.vecb|`

D

`|vecu|+ vecu. (veca + vecb)`

Text Solution

Verified by Experts

The correct Answer is:
a,c

we have
`vecv= vecaxxvecb= |veca||vecb| sin theta hatn = sin theta hatn`
where `veca and vecb` are unit vectors. Therefore,
`|vecv|= sin theta`
Now, `vecu = veca - (veca.vecb)vecb`
`= veca -vecb cos theta ( " where " veca. Vecb = cos theta)`
`|vecu|^(2) = | veca-vecb cos theta|^(2)`
` 1 + cos^(2) theta -2 cos theta . cos theta`
` =1 - cos^(2) theta = sin^(2) theta = |v|^(2)`
` Rightarrow |vecu|= |vecv|`
Also , `vecu . vecb = veca. vecb - (veca.vecb) (vecb.vecb)`
` = veca.vecb-veca.vecb=0`
`|vecu.vecb|=0`
`|vecv|=|vecu|+ |vecu.vecb|` is also correct.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise single correct answer type|28 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb , then |vecv| is

If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

If vec a \ a n d \ vec b are two non-collinear unit vector, and ∣ ​ veca + vecb ∣ ​ = 3 ​ then (2 veca −5 vecb ).(3 veca + vecb ) =

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

Prove that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb) .

Show that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb)

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

Let veca vecb and vecc be non- zero vectors aned vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc .vectors vecV_(1) and vecV_(2) are equal . Then

If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|vecb|) is

If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ (vecb + veca) xx (2 veca + vecb)] = veca+vecb then angle theta " between " veca and vecb is