Home
Class 12
MATHS
Find the projection of veca on vecb if ...

Find the projection of `veca` on `vecb` if `veca`. `vecb` =8 and `vecb` = `2hati +6 hatj+3hatk `

Text Solution

Verified by Experts

The correct Answer is:
a

`(veca_(k)xxveca_(k+1))-r^(2)sin""(2pi)/n`
`veca_(k).veca_(k+1)=r^(2)cos"" (2pi)/n`
Given `|underset(k=1)overset(n-1)sumveca_(k)xxveca_(k+1)| = |underset(k+1)overset(n-1)suma_(k).a_(k+1)|`
`Rightarrow r_(2) (n-1)sin"" (2pi)/n = r^(2)(n-1) cos ""(2pi)/n`
`Rightarrow tan "" (2pi)/n=1`
` Rightarrow (2pi)/n = kpi + pi/4, k in Z`
`Rightarrow n = 8/(4k=1) `
`Rightarrow` n=8 ( when k =0)
Note: solutions of the remaining parts are given in their respective chapters.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Comprehension type|27 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(2) is equal to (A) 943/49 (2 hati - 3hatj - 6hatk) (B) 943/(49^(2)) (2 hati - 3hatj - 6hatk) (C) 943/49 (-2 hati + 3hatj + 6hatk) (D) 943/(49^(2)) (-2 hati + 3hatj + 6hatk)

Find the projection of the vector veca=2hati+3hatj+2k on the vector vecb=hati+2hatj+hatk .

Find the angle between the two vectors vecA = hati + 2hatj + 3hatk and vecB = 2hati+ hatj + 4hatk .

The projection of the vector veca=2hat(i)-hatj+hatk on the vector vecb=hati-2hat(j)+hatk will be

Find the value of lambda if the vectors veca and vecb are perpendicular. where, veca = 2hati+lambda hatj + hatk and vecb = hati-2 hatj + 3hatk

Find |veca|and |vecb|, if (veca+vecb).(veca-vecb) =8 and |veca|=8|vecb|

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(1).vecb is equal to (A) -41 (B) -41//7 (C) 41 (D)287

Find |vecaxxvecb| , if veca=2hati-7hatj+7hatk and vecb=3hati-2hatj+2hatk

If |veca|=4 , |veca-vecb| = 6 and |veca +vecb|=8 then find |vecb|