Home
Class 11
MATHS
If vec axx vec b= vec bxx vec c!=0,w h ...

If ` vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c` are coplanar vectors, then for some scalar `k` prove that ` vec a+ vec c=k vec bdot`

Text Solution

Verified by Experts

since `veca xx vecb = vecb xx vecc ne vec0` , we have
`veca xx vecb - vecb xx vecc = vec0`
` or veca xx vecb + vecc xx vecb = vec0`
`or ( veca + vecc) xx vecb = vec0 `
Hence, `veca + vecb` is parallel to `vecb` . Thus ,
`veca + vecc = k vecb`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.3|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise single correct answer type|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE PUBLICATION|Exercise All Questions|689 Videos

Similar Questions

Explore conceptually related problems

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then 1. vec a , vec b ,a n d vec c can be coplanar 2. vec a , vec b ,a n d vec c must be coplanar 3. vec a , vec b ,a n d vec c cannot be coplanar 4.none of these

If vec r . vec a= vec r . vec b= vec r . vec c=0,w h e r e vec a , vec b ,and vec c are non-coplanar, then a. vec r_|_( vec cxx vec a) b. vec r_|_( vec axx vec b) c. vec r_|_( vec bxx vec c) d. vec r= vec0

[( vec axx vec b)xx( vec bxx vec c)( vec bxx vec c)xx( vec cxx vec a)( vec cxx vec a)xx( vec axx vec b)] is equal to (where vec a , vec ba n d vec c are nonzero non-coplanar vector) a. [ vec a vec b vec c]^2 b. [ vec a vec b vec c]^3 c. [ vec a vec b vec c]^4 d. [ vec a vec b vec c]

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

Show that the vectors 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors (where vec a , vec b , vec c are non-coplanar vectors)

vec rxx vec a= vec bxx vec a ; vec rxx vec b= vec axx vec b ; vec a!= vec0; vec b!= vec0; vec a!=lambda vec b ,a n d vec a is not perpendicular to vec b , then find vec r in terms of vec aa n d vec bdot

Prove that [[ vec a+ vec b, vec b+ vec c, vec c+ vec a]]=2[ [vec a, vec b, vec c]]dot

If | vec a|=2| vec b|=5 and | vec axx vec b|=8, then find the value of vec a . vec bdot

Vectors vec Aa n d vec B satisfying the vector equation vec A+ vec B= vec a , vec Axx vec B= vec ba n d vec A*vec a=1,w h e r e vec aa n d vec b are given vectors, are a. vec A=(( vec axx vec b)- vec a)/(a^2) b. vec B=(( vec bxx vec a)+ vec a(a^2-1))/(a^2) c. vec A=(( vec axx vec b)+ vec a)/(a^2) d. vec B=(( vec bxx vec a)- vec a(a^2-1))/(a^2)

If vec a, vec b,vec c and vec d are unit vectors such that (vec a xx vec b) . vec c xx vec d= 1 and vec a.vec c =1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c ,vec d are non -coplanar c) vec b, vecd are non parallel d) vec a , vec d are parallel and vec b, vec c are parallel