Home
Class 11
MATHS
Given that vec a , vec b , vec p , vec ...

Given that ` vec a , vec b , vec p , vec q` are four vectors such that ` vec a+ vec b=mu vec p , vec bdot vec q=0a n d( vec b)^2=1,w h e r emu` is a scalar. Then `|( vec adot vec q) vec p-( vec pdot vec q) vec a|` is equal to `2| vec pdot vec q|` b. `(1//2)| vec pdot vec q|` c. `| vec pxx vec q|` d. `| vec pdot vec q|`

A

`2|vecpvecq|`

B

`(1//2)|vecp.vecq|`

C

`|vecpxxvecq|`

D

`|vecp.vecq|`

Text Solution

Verified by Experts

The correct Answer is:
d

`veca + vecb = mu vecp " " vecb.vecq =0, |vecb|^92) =1`
`veca + vecb = muvecp`
` Rightarrow (veca + vecb) xx veca = mu vecp xx veca, vecb xx veca= muvecp xx veca`
` Rightarrow vecq xx ( vecb xx veca) = muvecq xx ( vecp xx veca) `
` Rightarrow (vecq .veca) vecb - ( vecq .vecb) veca = muvecq xx (vecp xx veca)`
`Rightarrow (vecq. veca) vecb = muvecq xx (vecp xx veca)`
`veca + vecb = mu vecp`
` Rightarrow vecq. (veca + vecb) = mu vecq. vecp`
` Rightarrow vecq. veca + vecq . vecb = muvecp .vecq`
` Rightarrow mu = (vecq.veca)/(vecp.vecq) `
`Rightarrow (vecq. veca)vecb = (vecq.veca)/(vecp.vecq) [(vecq.veca) .vecp - (vecq.vecp) veca]`
` Rightarrow | (vecq.veca) vecp -(vecq.vecp) veca| = |vecp.vecq|vecb| = |(vecp.vecq)| . |vecb|`
` Rightarrow |(vecq.veca) vecp.- (vecq.vecp) ]veca| = |vecp.vecq|`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE PUBLICATION|Exercise All Questions|689 Videos
CENGAGE PUBLICATION-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If vec ra n d vec s are non-zero constant vectors and the scalar b...

    Text Solution

    |

  2. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  3. Given that vec a , vec b , vec p , vec q are four vectors such that ...

    Text Solution

    |

  4. The position vectors of the vertices A ,Ba n dC of a triangle are th...

    Text Solution

    |

  5. If a is real constant A ,B and C are variable angles and sqrt(a^2-4)ta...

    Text Solution

    |

  6. The vertex A triangle A B C is on the line vec r= hat i+ hat j+lambda...

    Text Solution

    |

  7. A non-zero vector vec a is such that its projections along vectors ...

    Text Solution

    |

  8. Position vector hat k is rotated about the origin by angle 135^0 i...

    Text Solution

    |

  9. In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d ...

    Text Solution

    |

  10. In fig. A B ,D Ea n dG F are parallel to each other and A D ,B Ga n...

    Text Solution

    |

  11. Vector vec a in the plane of vec b=2 hat i+ hat ja n d vec c= hat i-...

    Text Solution

    |

  12. Let A B C D be a tetrahedron such that the edges A B ,A C and A D ar...

    Text Solution

    |

  13. Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot] deno...

    Text Solution

    |

  14. If vec a is parallel to vec bxx vec c , then ( vec axx vec b).( vec ...

    Text Solution

    |

  15. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  16. If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vec...

    Text Solution

    |

  17. If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(veca...

    Text Solution

    |

  18. If the two diagonals of one its faces are 6 hat i+6 hat ka n d4 hat ...

    Text Solution

    |

  19. The volume of a tetrahedron formed by the coterminous edges vec a ...

    Text Solution

    |

  20. If vec a , vec b , and vec c are three mutually orthogonal unit vector...

    Text Solution

    |