Home
Class 11
MATHS
If vecA=(1,1,1) and vecC=(0,1,-1) are gi...

If `vecA=(1,1,1) and vecC=(0,1,-1)` are given vectors then find a vector `vecB` satisfying equations `vecAxxvecB=vecC and vecA.vecB=3`

Text Solution

Verified by Experts

The correct Answer is:
`5/3hati+2/3hatj + 2/3 hatk`

Given `vecA = hati + hatj - hatk and vecC = hatj -hatk`
Let `vecB =x hati + yhatj +zhatk`
Given that `vecAxxvecB=vecC Rightarrow |{:(hati,hatj,hatk),(1,1,1),(x,y,z):}|=hatj=hatk`
`or (z-y)i +(x-z)hatj +(y-x)hatk=hatj-hatk`
z-y=0 , x-z=1 and y-x =-1
Also , `vecA. vecB=3`
`Rightarrow x+y +z=3`
Using (i) and(ii) , we get
`y=2//3,xx=5//3,z=2//3`
`vecB = 5/3 hati + 2/3hatj + 2/3 hatk`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective type|19 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE PUBLICATION|Exercise All Questions|689 Videos

Similar Questions

Explore conceptually related problems

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

If veca bot vecb then vector vecv in terms of veca and vecb satisfying the equations vecv. veca = 0 and vecv. vecb = 1 and [ vecv.(vecaxx vecb)] =1 is

If veca = hati + hatj + hatk , vecb = hatj - hatk then find a vector vecc , such that veca xx vecc = vecb and veca .vecc = 3 .

If vecb and vecc are unit vectors, then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecc))xx (vecb xx vecc)) .(vecb -vecc) is always equal to

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecb and vecr.veca =0 then find the value of vecr .vecb .

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . where veca and vecb are given vectors, are

If veca, vecb, vecc and vecd are distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecb-vecc)ne 0

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca, vecb, vecc and vecd are unit vectors such that (vecaxx vecb).(veccxxvecd)=1 and veca.vecc=1/2 then

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))