Home
Class 11
MATHS
Let veca, vecb and vecc be three vectors...

Let `veca, vecb` and `vecc` be three vectors having magnitudes 1,1 and 2 resectively. If `vecaxx(vecaxxvecc)+vecb=vec0` then the acute angel between `veca` and `vecc` is

Text Solution

Verified by Experts

The correct Answer is:
`pi//6`

`veca xx (vecaxxvecc) +vecb=vec0`
`or (veca.vecc)veca-(veca.veca)vecc+vecb=vec0`
`or 2 cos theta. veca-vecc+vecb=vec0`
(using `|veca|=1,|vecb|=1,|vecc|=2`)
`or (2costheta veca-vecc)^(2)=(-vecb)^(2)`
`or 4cos^(2)theta.|veca|^(2)+|vecc|^(2)`
`-2.2 cos theta.veca.vecc=|vecb|^(2)`
`or 4cos^(2)theta+4-8costheta.costheta=1`
`or cos^(2)theta-8cos^(2)theta+4=1`
`or 4 cos^(2) theta=3`
`or cos theta = +- sqrt3//2`
for `theta` to be acute , `cos theta= sqrt3/2 Rightarrow theta= pi/6`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective type|19 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE PUBLICATION|Exercise All Questions|689 Videos

Similar Questions

Explore conceptually related problems

let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2, respectively, if vecaxx(vecaxxvecc)+vecb=vec0, then the acute angle between veca and vecc is _______

If veca+vecb=vecc , and a+b=c then the angle between veca and vecb is

Let veca, vecb and vecc be the three vectors having magnitudes, 1,5 and 3, respectively, such that the angle between veca and vecb "is " theta and veca xx (veca xxvecb)=vecc . Then tan theta is equal to

veca,vecb and vecc are three orthogonal vectors with magnitudes 3, 4 and 12 respectively. The value of abs(veca+vecb+vecc) =

If veca+vecb=vecc and a+b=c , find the angle between veca and vecb .

Let veca,vecb and vecc be the non zero vectors such that (vecaxxvecb)xxvecc=1/3 |vecb||vecc|veca. if theta is the acute angle between the vectors vecb and vecc then sintheta equals (A) 1/3 (B) sqrt(2)/3 (C) 2/3 (D) 2sqrt(2)/3

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. vecb =2 . If vecc = (2vecaxx vecb) - 3vecb then find angle between vecb and vecc .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between vecb and vecc .

If three unit vectors veca, vecb and vecc " satisfy" veca+vecb+vecc= vec0 . Then find the angle between veca and vecc .