Home
Class 11
MATHS
If vecx.veca=0vecx.vecb=0 and vecx.vecc=...

If `vecx.veca=0vecx.vecb=0 and vecx.vecc=0` for some non zero vector `vecx` then show that `[veca vecb vecc]=0`

Text Solution

Verified by Experts

The correct Answer is:
1

` vecX. vecA = 0 Rightarrow " either " vecA = 0 or vecX bot vecA`
` vecX.vecC =0 Rightarrow " either" vecC=0 vecX bot vecC`
In any of the three cases,
`vecA, vecB, vecC =0 Rightarrow [vecA vecB vecC] =0`
Otherwise if `vecX bot vecA, vecX bot vecB and vecX bot vecC` , then
`vecA, vecB and vecC` are coplanar. then
` [ vecA vecB vecC] =0`
Therefore, the statement is true.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise fill in the blanks|14 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE PUBLICATION|Exercise All Questions|689 Videos

Similar Questions

Explore conceptually related problems

If vecx.veca=0 vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca, vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc) is

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca,vecb and vecc are three mutually perpendicular vectors of equal magnitude, show that vec a + vecb + vecc is equally inclined to veca, vecb and vecc . Also find the angle.

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to