Home
Class 11
MATHS
The number of vectors of unit length ...

The number of vectors of unit length perpendicular to vectors ` vec a=(1,1,0)a n d vec b=(0,1,1)` is a. one b. two c. three`` d. infinite

A

one

B

two

C

three

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
b

we know that if `hatn` is perpendicular to `veca` as we as `vecb` .then
`hatn=(vecaxxvecb)/(|vecaxxvecb|)or (vecbxxveca)/(|vecbxxveca|)`
As ` veca xx vecb and vecb xx veca` represent two vectors in opposite directions , we have two possible value of `hatn`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise single correct answer type|28 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE PUBLICATION|Exercise All Questions|689 Videos

Similar Questions

Explore conceptually related problems

Vector vec c is perpendicular to vectors vec a=(2,-3,1)a n d vec b=(1,-2,3) and satisfies the condition vec x cdot( hat i+2 hat j-7 hat k)=10. Then vector vec c is equal to a. (7,5,1) b. -7,-5,-1 c. 1,1,-1 d. none of these

If vec a , vec b , vec c are mutually perpendicular unit vectors, find |2 vec a+ vec b+ vec c|dot

In each of the following find a unit a vector perpendicular to both vec (a) and vec (b) vec(a) = (2,1,1) and vec(b) = (1,-1,2)

vec a , vecb , vec c are three mutually perpendicular unit vectors then |vec a + vec b + vec c| is equal to

vec aa n d vec b are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to vec a , vec ba n d vec axx vec b is a. 1/(sqrt(2))( vec a+ vec b+ vec axx vec b) b. 1/2( vec axx vec b+ vec a+ vec b) c. 1/(sqrt(3))( vec a+ vec b+ vec axx vec b) d. 1/3( vec a+ vec b+ vec axx vec b)

The angles of triangle, two of whose sides are represented by vectors sqrt(3)( vec axx vec b) \a n d \ vec b-( hat adot vec b) hat a ,w h e r e vec b is a non zero vector and hat a is unit vector in the direction of vec a , are

Show that the vector vec(a) is perpendicular to the vector vec(b) - (vec(a).vec(b))/(|vec(a)|^(2))vec(a)

Let vec aa n d vec b be unit vectors that are perpendicular to each other. Then [ vec a+( vec axx vec b) vec b+( vec axx vec b) vec axx vec b] will always be equal to 1 b. 0 c. -1 d. none of these

If the angel between unit vectors vec aa n d vec b60^0 , then find the value of | vec a- vec b|dot

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of | vec a+ vec b+ vec c |