Home
Class 11
MATHS
vecP = (2hati - 2hatj +hatk) , then fin...

` vecP = (2hati - 2hatj +hatk) ` , then find `|vecP|`

Text Solution

Verified by Experts

The correct Answer is:
a,c,d

`veca=1/3(2hati-2hatj+hatk)`
`|veca|^(2)=1/9(4+4+1)=1or |veca|=1`
Let `vecb = 2hati - 4hatj + 3hatj`, then
` cos theta = (veca.vecb)/(|veca||vecb|) = 5/sqrt29 Rightarrow vecc ||veca`
Let `vecd = 3hati + 2hatj + 2hatk, " then " veca. vecd =0 Rightarrrow veca bot vecd`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise single correct answer type|28 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE PUBLICATION|Exercise All Questions|689 Videos

Similar Questions

Explore conceptually related problems

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

Given two vectors veca= -hati +hatj + 2hatk and vecb =- hati - 2 hatj -hatk find |vec a xx vec b|

If the vectors vec a=2hati-hatj+hatk, vec b=hati+mhatj-3hatk and vec c =3hati-4hatj+5hatk are coplanar, then find m.

If veca=hati-2hatj+3hatk and vecb=-2hati+hatj-2hatk , then the value of |veca xx vecb| is -

Given that vecu = hati - 2hatj + 3hatk , vecv = 2hati + hatj + 4hatk , vecw = hati + 3hatj + 3hatk and (vecu.vecR - 15) hati + (vecv. vecR - 30) hatj + (vecw . vecR - 20) veck = 0 . Then find the greatest integer less than or equal to |vecR| .

Find the angle between the lines vecr = (2hati - hatj +3hatk) + lambda(hati + hatj + 2hatk) and vec r = (hati - 3hatj)+mu(2hatj - hatk)

Find the angle between the two vectors vecA = hati + 2hatj + 3hatk and vecB = 2hati+ hatj + 4hatk .

vecA =2hati +3hatj+4hatk & vecB=hati- hatj + hatk are two given vectors. Find out the value of barA xx barB .