Home
Class 11
MATHS
Let vec A be a vector parallel to the ...

Let ` vec A` be a vector parallel to the line of intersection of planes `P_1a n dP_2dot` Plane `P_1` is parallel to vectors `2 hat j+3 hat ka n d4 hat j-3ka n dP_2` is parallel to ` hat j- hat ka n d3 hat i+3 hat jdot` Then the angle betweenvector ` vec A` and a given vector `2 hat i+ hat j-2 hat k` is `pi//2` b. `pi//4` c. `pi//6` d. `3pi//4`

A

`pi//2`

B

`pi//4`

C

`pi//6`

D

`3pi//4`

Text Solution

Verified by Experts

The correct Answer is:
b,d

Normal to plane `P_(1)` is
`vecn_(1)= (2hatj+3hatk)xx)(4hatj-3hatk)=-18hati`
Normal to plane `P_(2)` is
Therefore, `vecn_(2)= (hatj-hatk)xx (3hati +3hatj)=3hati -3hatj-3hatk`
`vecA` is parallel to `+-(vecn_(1)xx vecn_(2))=+- (-54hatj+54hatk)`
Now , the angle between `vecA nad 2hati +hatj - 2hatk` is given by
`cos thet=+-((-54hatj+54hatk).(2hati+hatj-2hatk))/(54sqrt2 .3)`
`=+-1/sqrt2`
`theta= pi//4 or 3pi//4`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise single correct answer type|28 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE PUBLICATION|Exercise All Questions|689 Videos

Similar Questions

Explore conceptually related problems

Let vec A be a vector parallel to the line of intersection of planes P_1a n dP_2dot Plane P_1 is parallel to vectors 2 hat j+3 hat ka n d4 hat j-3ka n dP_2 is parallel to hat j- hat ka n d3 hat i+3 hat jdot Then the angle betweenvector vec A and a given vector 2 hat i+ hat j-2 hat k is a. pi//2 b. pi//4 c. pi//6 d. 3pi//4

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Find vec adot vec b when: vec a= hat j- hat k\ a n d\ vec b=2 hat i+3 hat j-2 hat k

Check whether the three vectors 2 hat i+2 hat j+3 hat k ,-3 hat i+3 hat j+2 hat ka n d3 hat i+4 hat k from a triangle or not

Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i+ hat j- hat kdot Then find [vec a vec b vec c]

Find the vector equation of the plane passing through the points having position vectors hat i+ hat j-2 hat k ,2 i - hat j+ hat ka n d hat i+2 hat j+ hat kdot

Find the vector of magnitude 3, bisecting the angle between the vectors vec a=2 hat i+ hat j- hat k and vec b= hat i-2 hat j+ hat kdot

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find vec(a) xx vec(b)

For given vector, vec a = 2 hat i j +2 hat k and vec b = - hat i + hat j - hat k , find the unit vector in the direction of the vector vec a + vec b .

Show that the line of intersection of the planes vec r.( hat i+2 hat j+3 hat k)=0 and vec r.(3 hat i+2 hat j+ hat k)=0 is equally inclined to ia n dkdot Also find the angle it makes with jdot