Home
Class 11
MATHS
Let Delta PQR be a triangle Let veca=...

Let `Delta PQR` be a triangle Let `veca=bar(QR),vecb=bar(RP)and vecc=bar(PQ)if |veca|=12,|vecb|=4 sqrt(3)and vecb.vecc=24,`then which of the following is (are ) true ?

A

(a) `|vecc|^(2)/2-|veca|=12`

B

(b) `|vecc|^(2)/2-|veca|=30`

C

(c) `|vecaxxvecb + veccxxveca|= 48sqrt3`

D

(d) `veca.vecb=-72`

Text Solution

Verified by Experts

The correct Answer is:
a,c,d

`veca + vecb+vecc =0`
`Rightarrow vecb + vecc= -veca`
`Rightarrow |vecb|^(2) +|vecc|^(2) + 2vecb.vecc= |veca|^(2)`
` Rightarrow 48 + |vec|^(2) + 48 = 144 `
` Rightarrow |vecc|^(2)=48`
`|vecc|= 4sqrt3`
` (|vecc|)^(2))/2+|veca|=36`
Further,
`veca+vecb=-vecc`
`Rightarrow |veca|^(2)+|vecb|^(2)+2veca.vecb=|vecc|^(2)`
`Rightarrow 144 + 48 + 2 veca. vecb= 48`
`veca. vecb = -72`
`veca.vecb + vecc=0`
`Rightarrow veca xx vecb +veca xx vecc=0`
`|veca xx vecb +vecc xx veca|`
`2|veca xx vecb|`
`=2 sqrt(a^(2)b^(2)-(veca.vecb)^(2))`
`2sqrt((144)(48)-(72)^(2))=48sqrt3`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise single correct answer type|28 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE PUBLICATION|Exercise All Questions|689 Videos

Similar Questions

Explore conceptually related problems

Let PQR be a triangle . Let veca=overline(QR),vecb = overline(RP) and vecc= overline(PQ).if |veca|=12, |vecb|=4sqrt3and vecb.vecc= 24 then which of the following is (are) true ?

If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) ,then which of the following is incorrect?

If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= lambda (veca xx vecb) , angle between vecc and vecb is 2pi//3 , |veca|=sqrt2, |vecb|=sqrt3 and |vecc|=1/sqrt3 then the angle between veca and vecb is

veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. vecb =2 . If vecc = (2vecaxx vecb) - 3vecb then find angle between vecb and vecc .

Let veca ,vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=2, |vecb|=3, |vecc| = 6 , the find the length of veca +vecb + vecc .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between vecb and vecc .

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

If veca, vecb, vecc and vecd are unit vectors such that (vecaxx vecb).(veccxxvecd)=1 and veca.vecc=1/2 then

Let veca , vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=3, |vecb|=4, |vecc| = 5 , the find the length of veca +vecb + vecc .