Home
Class 12
MATHS
Let ABC be a triangle with incentre I. I...

Let ABC be a triangle with incentre I. If P and Q are the feet of the perpendiculars from A to BI and CI, respectively, then prove that `(AP)/(BI) + (AQ)/(Cl) = cot.(A)/(2)`

Text Solution

Verified by Experts

In `Delta APB, sin.(B)/(2) = (AP)/(AB)`

In `Delta AQC, sin.(C)/(2) = (AQ)/(AC)`
Now, in `Delta ABI`, using sine rule, we get
`(BI)/((sin.(A)/(2)) = (AB)/((cos.(C)/(2))`
And in `Delta ACI`, using sine rule, we get
`(CI)/((sin.(A)/(2)) = (AC)/(cos.(B)/(2))`
`:. (AP)/(BI) + (AQ)/(CI) = (AB sin.(B)/(2) cos.(C)/(2))/(AB sin.(A)/(2)) + (AC sin.(C)/(2) cos.(B)/(2))/(AC sin.(A)/(2))`
`= (sin((B + C)/(2)))/(sin.(A)/(2)) = cot.(A)/(2)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Illustration|86 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.1|12 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

Let A B C be a triangle with incentre at I Also, let P and Q be the feet of perpendiculars from A to BI and CI respectively. Then which of the following results are correct? (A P)/(B I)=(sinB/2cosC/2)/(sinA/2) (b) (A Q)/(C I)=(sinC/2cosB/2)/(sinA/2) (A P)/(B I)=(sinC/2cosB/2)/(sinA/2) (d) (A P)/(B I)+(A Q)/(C I)=sqrt(3)if/_A=60^0

Let ABC be a triangle with incentre I and inradius r. Let D, E, F be the feet of the perpendiculars from I to the sides BC, CA and AB, respectively, If r_(2)" and "r_(3) are the radii of circles inscribed in the quadrilaterls AFIE, BDIF and CEID respectively, then prove that r_(1)/(r-r_(1))+r_(2)/(r-r_(2))+r_(3)/(r-r_(3))=(r_(1)r_(2)r_(3))/((r-r_(1))(r-r_(2))(r-r_(3)))

Let ABC be an acute angled triangle with orthocenter H.D, E, and F are the feet of perpendicular from A,B, and C, respectively, on opposite sides. Also, let R be the circumradius of DeltaABC . Given AH.BH.CH = 3 and (AH)^(2) + (BH)^(2) + (CH)^(2) = 7 Then answer the following Value of R is

Let ABC be an acute angled triangle with orthocenter H.D, E, and F are the feet of perpendicular from A,B, and C, respectively, on opposite sides. Also, let R be the circumradius of DeltaABC . Given AH.BH.CH = 3 and (AH)^(2) + (BH)^(2) + (CH)^(2) = 7 Then answer the following Value of (cos A. cos B . cos C)/(cos^(2)A + cos^(2)B + cos^(2)C) is

Let ABC be an acute angled triangle with orthocenter H.D, E, and F are the feet of perpendicular from A,B, and C, respectively, on opposite sides. Also, let R be the circumradius of DeltaABC . Given AH.BH.CH = 3 and (AH)^(2) + (BH)^(2) + (CH)^(2) = 7 Then answer the following Value of HD.HE.HF is

In a acute angled triangle ABC, proint D, E and F are the feet of the perpendiculars from A,B and C onto BC, AC and AB, respectively. H is orthocentre. If sinA=3/5a n dB C=39 , then find the length of A H

For triangle ABC,R=5/2 and r=1. Let I be the incenter of the triangle and D,E and F be the feet of the perpendiculars from I->BC,CA and AB, respectively. The value of (ID*IE*IF)/(IA*IB*IC) is equal to (a) 5/2 (b) 5/4 (c) 1/10 (d) 1/5

Let A B C be a triangle with incenter I and inradius rdot Let D ,E ,a n dF be the feet of the perpendiculars from I to the sides B C ,C A ,a n dA B , respectively. If r_1,r_2a n dr_3 are the radii of circles inscribed in the quadrilaterals A F I E ,B D I F ,a n dC E I D , respectively, prove that (r_1)/(r-1_1)+(r_2)/(r-r_2)+(r_3)/(r-r_3)=(r_1r_2r_3)/((r-r_1)(r-r_2)(r-r_3))

I is the incentre of the Delta ABC . The perpendicular drawn from I to BC intersects BC at. P. Prove that AB-AC=BP-CP .

Let f, g and h be the lengths of the perpendiculars from the circumcenter of Delta ABC on the sides a, b, and c, respectively. Prove that (a)/(f) + (b)/(g) + (c)/(h) = (1)/(4) (abc)/(fgh)