Home
Class 12
MATHS
Let O be the circumcentre and H be the o...

Let O be the circumcentre and H be the orthocentre of an acute angled triangle ABC. If `A gt B gt C`, then show that `Ar (Delta BOH) = Ar (Delta AOH) + Ar (Delta COH)`

Text Solution

Verified by Experts


From the figure, we have
`angle OAH = A - 2(90^(@) - B) = B - C`
Similarly, `angle OBH = A - C`
and `angle OCH = A - B`
Also, `AH = 2R cos A, BH = 2R cos B, CH = 2R cos C`
`Ar (Delta AOH) = (1)/(2) (R) (2R cos A) sin (B - C)`
`= R^(2) cos (B + C) sin (C - B)`
`=(R^(2))/(2) (sin 2 C - sin 2B)`
Similarly, `Ar(DeltaBOH) = (R^(2))/(2) (sin 2C - sin 2A)`
and `Ar (Delta COH) = (R^(2))/(2) (sin 2 B - sin 2A)`
Clearly, `AR (Delta AOH) + Ar (Delta COH) = Ar (Delta BOH)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Illustration|86 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.1|12 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

prove that In an acute angled triangle ABC, secA+ secB+secCge6 is

In an acute angled triangle ABC, show that tan^2A+tan^2B+tan^2Cge9

O is the circumcentre of Delta ABC and OD bot BC . Prove that angle BOD= angle BAC

(ii) Orthocentre of the triangle ABC is O, If angle BAC=40^@ , then angle BOC=

If the angles of a right angled triangle ar in A.P , then the smallest angle is

In triangle ABC, If cos B= a/(2c) , then the triangle is-

(i) The circumcentre of the triangle ABC is O, If angle BOC=80^@, then angle BAC=