Home
Class 12
MATHS
In a acute angled triangle ABC, proint D...

In a acute angled triangle ABC, proint D, E and F are the feet of the perpendiculars from A,B and C onto BC, AC and AB, respectively. H is orthocentre. If `sinA=3/5a n dB C=39 ,` then find the length of `A H`

Text Solution

Verified by Experts

Given `sin A = 3//5`
`rArr cos A = 4//5`
Also `a = 39`
`:. (a)/(sin A) = 2R`
or `(39 xx 5)/(3) = 2R`
or `2R = 65`
`rArr AH = 2R cos A = 65 xx (4)/(5) = 52`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.1|12 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

ABC is a right angled triangle , right angled at C and P is the length of perpendicular from C on AB. If a, b and C are the length of sides BC, CA and AB respectively. Then___

Let ABC be an acute angled triangle with orthocenter H.D, E, and F are the feet of perpendicular from A,B, and C, respectively, on opposite sides. Also, let R be the circumradius of DeltaABC . Given AH.BH.CH = 3 and (AH)^(2) + (BH)^(2) + (CH)^(2) = 7 Then answer the following Value of R is

Let ABC be an acute angled triangle with orthocenter H.D, E, and F are the feet of perpendicular from A,B, and C, respectively, on opposite sides. Also, let R be the circumradius of DeltaABC . Given AH.BH.CH = 3 and (AH)^(2) + (BH)^(2) + (CH)^(2) = 7 Then answer the following Value of (cos A. cos B . cos C)/(cos^(2)A + cos^(2)B + cos^(2)C) is

Let ABC be an acute angled triangle with orthocenter H.D, E, and F are the feet of perpendicular from A,B, and C, respectively, on opposite sides. Also, let R be the circumradius of DeltaABC . Given AH.BH.CH = 3 and (AH)^(2) + (BH)^(2) + (CH)^(2) = 7 Then answer the following Value of HD.HE.HF is

Delta ABC is an acute angle triangle inscribed in a circle in a circle .AD is a diameter of the circle . Two perpendiculars BE and CF are drawn from B and C to AC and AB respectively , which intersect each other at the point G . Prove that BDCG is a parallelogram.

In DeltaABC , AB = AC. The perpendiculars drawn from B and C to AC and AB respectively, intersect the sides AC and AB at the points E and F respectively. Prove that FE||BC.

Let A B C be a triangle with incenter I and inradius rdot Let D ,E ,a n dF be the feet of the perpendiculars from I to the sides B C ,C A ,a n dA B , respectively. If r_1,r_2a n dr_3 are the radii of circles inscribed in the quadrilaterals A F I E ,B D I F ,a n dC E I D , respectively, prove that (r_1)/(r-1_1)+(r_2)/(r-r_2)+(r_3)/(r-r_3)=(r_1r_2r_3)/((r-r_1)(r-r_2)(r-r_3))

Circumradius of DeltaABC is 3 cm and its area is 6 cm^(2) . If DEF is the triangle formed by feet of the perpendicular drawn from A,B and C on the sides BC, CA and AB, respectively, then the perimeter of DeltaDEF (in cm) is _____

For triangle ABC,R=5/2 and r=1. Let I be the incenter of the triangle and D,E and F be the feet of the perpendiculars from I->BC,CA and AB, respectively. The value of (ID*IE*IF)/(IA*IB*IC) is equal to (a) 5/2 (b) 5/4 (c) 1/10 (d) 1/5

In the triangle ABC, if a=5, b=7 and c=3, find the angle B and the circumradius R.

CENGAGE PUBLICATION-PROPERTIES AND SOLUTIONS OF TRIANGLE-Illustration
  1. Prove that the distance between the circumcenter and the incenter of ...

    Text Solution

    |

  2. Prove that acosA+bcosB+ccosClt=sdot

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If in A B C , the distances of the vertices from the orthocentre are ...

    Text Solution

    |

  5. ABC is an acute angled triangle with circumcenter O and orthocentre H....

    Text Solution

    |

  6. In a acute angled triangle ABC, proint D, E and F are the feet of the ...

    Text Solution

    |

  7. Prove that he distance between the circum-centre and the ortho-centre ...

    Text Solution

    |

  8. Let ABC be an acute angled triangle whose orthocentre is at H. If a...

    Text Solution

    |

  9. In A B C , let L ,M ,N be the feet of the altitudes. The prove that s...

    Text Solution

    |

  10. The lengths of the medians through acute angles of a right-angled tr...

    Text Solution

    |

  11. Two medians drawn from the acute angles of a right angled triangle ...

    Text Solution

    |

  12. Prove that r1+r2+r3-r=4R

    Text Solution

    |

  13. If r1 =r2+r3+r, prove that the triangle is right angled.

    Text Solution

    |

  14. Prove that (r(1+r2))/1=2R

    Text Solution

    |

  15. Prove that (r+r1)tan((B-C)/2)+(r+r2)tan((C-A)/2)+(r+r3)tan((A-B)/2)=0

    Text Solution

    |

  16. If the distance between incenter and one of the excenter of an equi...

    Text Solution

    |

  17. If I1, I2, I3 are the centers of escribed circles of triangle A B C ,...

    Text Solution

    |

  18. Prove that the sum of the radii of the circles, which are, respectiv...

    Text Solution

    |

  19. If the area of the circle is A1 and the area of the regular pentagon i...

    Text Solution

    |

  20. Prove that the area of a regular polygon hawing 2n sides, inscribed in...

    Text Solution

    |