Home
Class 12
MATHS
Prove that a(b^(2) + c^(2)) cos A + b(c^...

Prove that `a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc`

Text Solution

Verified by Experts

`ab^(2) cos A + ba^(2) cos B + ac^(2) cos A + ca^(2) cos C + bc^(2) cos B + b^(2) c cos C`
`= ab(b cos A + a cos B) + ac (c cos A + a cos C) + bc (c cos B + b cos C)`
`= abc + abc + abc = 3abc`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.4|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.5|7 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.2|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

(vii) (b^(2) -c^(2)) cos 2A + (c^(2) -a^(2)) cos 2B + (a^(2) -b^(2)) cos 2C=0

In any triangle ABC, prove that, (b^(2)-c^(2))cot A + (c^(2)-a^(2)) cot B + (a^(2)-b^(2)) cot C=0

Prove that (b + c) cos A + (c + a) cos B + (a + b) cos C = 2s

(v) (b^(2)-c^(2))/(cos B + cos C) + (c^(2)-a^(2))/( cos C + cosA) + (a^(2)-b^(2))/(cos A + cos B)=0

(xiv) a cos A + b cos B + c cos C = (abc)/(2R^(2))

Prove that bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2) = s^(2)

(iv) a^(2)(cos^(2) B - cos^(2)C) + b^(2) (cos^(2) C- cos^(2)A) + c^(2) (cos^(2)A- cos^(2)B)=0

Prove that (cos C + cos A)/(c + a) + (cos B)/(b) = (1)/(b)

If angles alpha and beta satisfy the equation a cos theta+ b sin theta= c(a,b,c are constants), prove that- (a) sin (alpha+ beta)= (2ab)/(a^(2)+b^(2)) (b) cos (alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2)) (c) cos (alpha- beta)=(2c^(2)-(a^(2)+b^(2)))/(a^(2)+b^(2))

Using properties of determinants prove that, |{:((b+c)^(2),a^(2),a^(2)),(b^(2),(c+a)^(2),b^(2)),(c^(2),c^(2),(a+b)^(2)):}|=2abc(a+b+c)^(3)