Home
Class 12
MATHS
In a triangle ABC, (a)/(b) = (2)/(3) and...

In a triangle `ABC, (a)/(b) = (2)/(3) and sec^(2) A = (8)/(5)`. Find the number of triangle satisfying these conditions

Text Solution

Verified by Experts

The correct Answer is:
two

We have `(a)/(b) = (b)/(3) = k` and
`sec^(2) A = (8)/(5)`
`rArr cos^(2) A = (5)/(8)`
`rArr (5)/(8) = ((9k^(2) + c^(2) - 4k^(2))/(6kc))^(2) = ((5k^(3) + c^(2))/(6kc))^(2)`
`rArr 45k^(2) c^(2) = 50 k^(4) + 20 k^(2) c^(2) + 2c^(4)`
`rArr 2c^(4) - 25 k^(2) c^(2) + 50k^(4) = 0`
`rArr c^(2) = (25 k^(2) +- sqrt(625 k^(4) - 400 k^(4)))/(4)`
`= (25k^(2) +- 15 k^(2))/(4) = 10 k^(2), (5)/(2) k^(2)`
There are two possible valid values of `c^(2)`. Hence there exist two triange satisfying the given conditions
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.7|4 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.8|7 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.5|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

There exist a triangle ABC satisfying

In a triangle ABC the angle A=60^(@) and b:c = (sqrt(3)+1):2 . Find the other two angles B and C.

In triangle ABC, (i) asin(A/2 + B) = (b+c) sin A/2

If in a triangle ABC, B = (2pi)/3, then cosA +cosC lies in

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

If in a triangle ABC, a cos ^(2)""C/2+ c cos ^(2)""A/2=(3b)/(2), then the sides a, b and c-

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.

If in a triangle ABC, cos^(2)A + cos^(2)B + cos^(2)C =1 , then show that the triangle is right angled.

If a=2b and A=3B, find the angles of the triangle ABC.

In triangle ABC , a=2,b=sqrt3 and A=90^@ , then find B?