Home
Class 12
MATHS
If a, b and A are given in a triangle an...

If a, b and A are given in a triangle and `c_(1), c_(2)` are possible values of the third side, then prove that `c_(1)^(2) + c_(2)^(2) - 2c_(1) c_(2) cos 2A = 4a^(2) cos^(2)A`

Text Solution

Verified by Experts

We have `cos A = (b^(2) + c^(2) - a^(2))/(2bc)`
`rArr c^(2) - 2bc cos A + b^(2) - a^(2) = 0`
The equation which is equadratic in 'c'
`:. C_(1) + c_(2) = 2b cos A and c_(1) c_(2) = b^(2) - a^(2)` ..(i)
`:. C_(1)^(2) + c_(2)^(2) - 2c_(1) c_(2) cos 2A`
`= (c_(1) + c_(2))^(2) - 2c_(1) c_(2) - 2c_(1) c_(2) cos 2A` [using (i)]
`= (c_(1) + c_(2))^(2) - 2c_(1) c_(2) (1 + cos 2A)`
`= 4b^(2) cos^(2) A - 2 (b^(2) -a^(2)) 2 cos^(2) A`
`= 4 a^(2) cos^(2) A`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.7|4 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.8|7 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.5|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

In A B C ,a , ca n dA are given and b_1,b_2 are two values of the third side b such that b_2=2b_1dot Then prove that sinA=sqrt((9a^2-c^2)/(8c^2))

In A B C ,a , ca n dA are given and b_1,b_2 are two values of the third side b such that b_2=2b_1dot Then prove that sinA=sqrt((9a^2-c^2)/(8c^2))

In Delta ABC, a, b and A are given and c_(1), c_(2) are two values of the third side c. Prove that the sum of the area of two triangles with sides a, b, c_(1) and a, b c_(2) " is " (1)/(2) b^(2) sin 2A

If in triangle ABC, a, c and angle A are given and c sin A lt a lt c , then ( b_(1) and b_(2) are values of b) (a) b_(1) + b_(2) = 2c cos A (b) b_(1) + b_(2) = c cos A (c) b_(1) b_(2) = c^(2) -a^(2) (d) b_(1) b_(2) = c^(2) + a^(2)

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

(vii) (b^(2) -c^(2)) cos 2A + (c^(2) -a^(2)) cos 2B + (a^(2) -b^(2)) cos 2C=0

Prove that, C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+.......+C_(n)^(2)=((2n)!)/(n!)^(2)

(iv) a^(2)(cos^(2) B - cos^(2)C) + b^(2) (cos^(2) C- cos^(2)A) + c^(2) (cos^(2)A- cos^(2)B)=0

Prove that sin^2(A/2)+sin^2(B/2)-sin^2(C/2)=1-2cos(A/2)cos(B/2)sin(C/2)

If A+C+B=180, then the value of (cos ^(2) A+ cos ^(2) B +cos ^(2) C-2 cos A cos B cos C) is-