Home
Class 12
MATHS
Prove that (r(1) -r)/(a) + (r(2) -r)/(b)...

Prove that `(r_(1) -r)/(a) + (r_(2) -r)/(b) = (c)/(r_(3))`

Text Solution

Verified by Experts

`(r_(1) -r)/(a) + (r_(2) -r)/(b) = ((Delta)/(s-a) - (Delta)/(s))/(a) + ((Delta)/(s-b) -(Delta)/(s))/(b)`
`= (Delta (s-s +a))/(a(s-a)s) + (Delta(s-s + b))/(s(s -b)b)`
`= (Delta)/(s(s-a)) + (Delta)/(s(s -b))`
`= (Delta)/(s) ((s-b + s-a)/((s -a) (s-b)))`
`= (Delta)/(s) (c (s-c))/((s-a) (s-b) (s-c))`
`= (Delta c(s -c))/(Delta^(2))`
`= (c)/(r_(3))`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.11|4 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Exercises|80 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Concept application exercise 5.9|5 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

Prove that r_(1) r_(2) + r_(2) r_(3) + r_(3) r_(1) = (1)/(4) (a + b + c)^(2)

Let ABC be a triangle with incentre I and inradius r. Let D, E, F be the feet of the perpendiculars from I to the sides BC, CA and AB, respectively, If r_(2)" and "r_(3) are the radii of circles inscribed in the quadrilaterls AFIE, BDIF and CEID respectively, then prove that r_(1)/(r-r_(1))+r_(2)/(r-r_(2))+r_(3)/(r-r_(3))=(r_(1)r_(2)r_(3))/((r-r_(1))(r-r_(2))(r-r_(3)))

Prove that (r_1+r_2)/(1+cosC)=2R

If the lengths of the perpendiculars from the vertices of a triangle ABC on the opposite sides are p_(1), p_(2), p_(3) then prove that (1)/(p_(1)) + (1)/(p_(2)) + (1)/(p_(3)) = (1)/(r) = (1)/(r_(1)) + (1)/(r_(2)) + (1)/(r_(3)) .

Let the incircle with center I of A B C touch sides BC, CA and AB at D, E, F, respectively. Let a circle is drawn touching ID, IF and incircle of A B C having radius r_2dot similarly r_1a n dr_3 are defined. Prove that (r_1)/(r-r_1)dot(r_2)/(r-r_2)dot(r_3)/(r-r_3)=(a+b+c)/(8R)

Prove that r_1+r_2+r_3-r=4R

Let A B C be a triangle with incenter I and inradius rdot Let D ,E ,a n dF be the feet of the perpendiculars from I to the sides B C ,C A ,a n dA B , respectively. If r_1,r_2a n dr_3 are the radii of circles inscribed in the quadrilaterals A F I E ,B D I F ,a n dC E I D , respectively, prove that (r_1)/(r-1_1)+(r_2)/(r-r_2)+(r_3)/(r-r_3)=(r_1r_2r_3)/((r-r_1)(r-r_2)(r-r_3))

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

O is the circumcenter of A B Ca n dR_1, R_2, R_3 are respectively, the radii of the circumcircles of the triangle O B C ,O C A and OAB. Prove that a/(R_1)+b/(R_2)+c/(R_3) =(a b c)/(R_3)

Prove that (r+r1)tan((B-C)/2)+(r+r2)tan((C-A)/2)+(r+r3)tan((A-B)/2)=0