Home
Class 12
MATHS
I f(x-y)e^(x-y)=0 then y(dy)/(dx)+x-2y=0...

`I f(x-y)e^(x-y)=0 then y(dy)/(dx)+x-2y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Express the following differential equations in the form f(x)dx+g(y)dy = 0 (i) (dy)/(dx) = (2y)/(x) (ii) x+y(dy)/(dx) = 0 (iii) (dy)/(dx) = e^(x-y) + x^(2).e^(-y) (iv) (dy)/(dx) + x^(2) = x^(2)e^(3y)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1)) or, (dy)/(dx)+e^(y-x)=0

if e^x+e^y=e^(x+y) then show that (dy)/(dx)+e^(y-x)=0 .

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

Express (1+e^(x//y)) dx+e^(x//y) (1-(x)/(y)) dy=0 in the form (dx)/(dy) = F((x)/(y)) .

If y_(1)(x) and y_(2)(x) are two solutions of (dy)/(dx)+f(x)y=r(x), then y_(1)(x)+y_(2)(x) is solution of : (A) (dy)/(dx)+f(x)y=0 (B) (dy)/(dx)+2f(x)y=r(x)(C)(dy)/(dx)+f(x)y=2r(x)(D)(dy)/(dx)+2f(x)y=2r(x)

If e^(x)+e^(y)=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0 .

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0