Home
Class 12
MATHS
find the value of sin^(-1)(sqrt3/2)+cos^...

find the value of `sin^(-1)(sqrt3/2)+cos^(-1)(-sqrt3/2)`

Text Solution

Verified by Experts

The correct Answer is:
`a rarr p, q; b rarr r, s; c rarr p,q; d rarr p,q`


O is circumcentre, then in `DeltaOMB, OM = R cos A` (distance circumcentre from BC)
Similary, distance of circumcentre from AC and AB are `R cos B and R cos C`
Applying sine rule in triangle OBC, we have
`2R_(1) = (a)/(sin 2A) = (a)/(2 sin A cos A) = (R)/(cos A)`
or `R_(1) = (R)/(2 cos A)`
Similarly, `R_(2) = (R)/(cos R) and R_(3) = (R)/(cos C)`
[where `R_(1), R_(2), R_(3)` are circumcenter of `DeltaOBC, DeltaOCA, and DeltaOAB`, respectively]
H is orthocentre, then in `DeltaAFH`,
`AAH = (AF)/(cos angleFAH) = (b cos A)/(cos (0^(@) -B)) = 2R cos A`
Similarly, `BH = 2R cos B, CH = 2R cos C`
Alos, `HF = AF tan angleFAH`
`=b cos A cot B = 2R cos A cos B`
Similarly, `HE = 2R cos A cos C and HD = 2R cos B cos C`

I is incentre, then in `DeltaIDB, BI = (ID)/(sin angleIBD) = (r)/(sin (B//2))`
Similarly, `CI = (r)/(sin(C//2)) and AI = (r)/(sin(A//2))`
Also in `DeltaIBI_(1)`,
`II_(1) = (BI)/(cos angleBII_(1)) = (r//[sin (B//2)])/(cos ((pi)/(2) -(C)/(2))) = (r)/(sin (B//2) sin (C//2))`
Similarly, `II_(2) = (r)/(sin (A//2) sin (C//2))`
and `II_(3) = (r)/(sin(A//2) sin (B//2))`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Numerical value type|22 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Single correct Answer type)|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Linked comprehension type|34 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

The value of sin^(-1)(-sqrt3/2)+cos^(-1)(sqrt3/2) is

Find the value of tan^-1 (sqrt3) - cot^-1 (-sqrt3)

The value of sin ^(-1)""((sqrt(3))/(2))+cos^(-1)""(-(sqrt(3))/(2)) is -

Find the principal values of sin^(-1)(-sqrt3/2)

Find the value of ((1+sqrt-3)/2)^100+((1-sqrt-3)/2)^100

find the principle value of cos^(-1)((sqrt3)/2)

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

sin cos^(-1) ""((-sqrt(3))/(2))

The value of sin^(-1)("cot"(sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)((sqrt(12))/4)+sec^(-1)sqrt(2)))i s (a) 0 (b) pi/2 (c) pi/3 (d) none of these