Home
Class 12
MATHS
show that tan^(-1)x+tan^(-1)((2x)/(1-x^2...

show that `tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3`

Text Solution

Verified by Experts

The correct Answer is:
`a rarr p; b rarr q, s; c rarr p; d rarr p,q`

`sin A , sin B` are roots of `c^(2) x^(2) - c (a +b) x + ab = 0`
`:. sin A + sin B = (c(a+b))/(c^(2))`
`rArr ((a+b))/(2R) = (c(a+b))/(c^(2)) " or " 2R = c` ...(i)
From sine formula, we have
`(a)/(sin A) = (b)/(sin B) = (c)/(sin C) = 2R = c` [using Eq. (i)] ltbr or `sin C = 1 " or " C = 90^(@)`
b. Using cosine formula, we have
`cos 30^(@) = (40^(2) + (40 sqrt3)^(2) - a^(2))/(2 xx 40 xx 40 sqrt3)`
or `a = 40`

Thus, `AB = BC = 40`, i.e., `DeltaABC` is isoceles.
Also, `angleA = angleC = 30^(@)`
`rArr angle B = 120^(@)`
Therefore, `DeltaABC` is an obtuse -angled triangle
c. `81^(sin^(2)x) + 81^(cos^(2)x) = 30`
or `81^(sin^(2)x) + (81)/(81^(sin^(2)x)) = 30`
Put `81^(sin^(2)x) = t`
`t + (81)/(t) = 30`
or `t = 27, t = 3`
When `t = 3, 81^(sin^(2)x) = 3`
or `3^(4 sin^(2)x) = 3`
or `x = 30^(@)`
When `t = 27, 3^(4 sin^(2)x) = 3^(3)`
`rArr x = 60^(@)`
Therefore, the triangle is right angled
d. In `DeltaABC`,
`cos A cos B + sin A sin B sin C = 1`
`rArr sin C = (1 - cos A cos B)/(sin A sin B)`...(i)
[ `:' angleC` is an angle of the triangle]
Since `0 lt sin C le 1`, we have
`0 lt (1-cos A cos B)/(sin A sin B) le 1`
or `1- cos A cos B le sin A sin B`
or `1 le sin A sin B + cos A cos B`
or `1 le cos (A -B) or cos (A- B) ge 1`
or `cos(A-B) =1`
or `A - B = 0 " or " A = B` ....(ii)
Also from Eq. (i) and (ii),
`sinC = (1- cos^(2)A)/(sin^(2)A)`
`sin C = 1 " or " C = 90^(@)`....(iii)
From Eqs. (ii) and (iii), `DeltaABC` is a right -angled isosceles triangle
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Numerical value type|22 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Single correct Answer type)|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Linked comprehension type|34 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1119 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

2 tan ^(-1) ""(2x)/(1-x^(2))=(pi)/(3)

tan^(-1)x+tan^(-1) (1-x) = 2 tan ^(-1) sqrt(x(1-x))

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

2 tan ^(-1)""(1+x)/(1-x)+sin ^(-1)""(1-x^(2))/(1+x^(2))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

int_(-1)^(3)[tan^(-1).(x)/(x^(2)+1)+cot^(-1).(x)/(x^(2)+1)]dx

tan ^(-1)x+cot^(-1)(x+1) = tan ^(-1) (1+x+x^(2))

show that 2 tan ^(-1) ((1+x)/(1-x)) - cos ^(-1)( (1-x^(2))/(1+x^(2)))=(pi)/(2)