Home
Class 12
MATHS
If c!=0 and the equation p//(2x)=a//(x+c...

If `c!=0` and the equation `p//(2x)=a//(x+c)+b//(x-c)` has two equal roots, then `p` can be a. `(sqrt(a)-sqrt(b))^2` b. `(sqrt(a)+sqrt(b))^2` c. `a+b` d. `a-b`

A

`(sqrt(a)-sqrt(b))^(2)`

B

`(sqrt(a)+sqrt(b))^(2)`

C

`a+b`

D

`a-b`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`(a,b)` We have `(p)/(2x)=((a+b)x+c(b-a))/(x^(2)-c^(2))`
`implies p(x^(2)-c^(2))=2(a+b)x^(2)-2c(a-b)x`
`implies (2a+2b-p)x^(2)-2c(a-b)x+pc^(2)=0`
Since roots are equal
`D=c^(2)(a-b)^(2)-pc^(2)(2a+2b-p)=0`
`implies (a-b)^(2)-2p(a+b)+p^(2)=0 (:' c^(2) ne 0)`
`implies [p-(a+b)]^(2)=(a+b)^(2)-(a-b)^(2)`
`impliesp=a+b+-2sqrt(ab)=(sqrt(a)+-sqrt(b))^(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION|121 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES|14 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise Single correct Answer|69 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

The harmonic mean of the roots of the equation (5+sqrt(2))x^2-(4+sqrt(5))x+8+2sqrt(5)=0 is 2 b. 4 c. 6 d. 8

If x= (sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) , then show that bx^2-ax+b=0

Knowledge Check

  • If x=(sqrt(a+2b) +sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) , then bx^2-ax +b=

    A
    0
    B
    2b
    C
    a
    D
    2ab
  • If the roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal,then a,b,c are in

    A
    A.P.
    B
    G.P.
    C
    H.P.
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Length of the latus rectum of the parabola sqrt(x) +sqrt(y) = sqrt(a) is (a) a sqrt(2) (b) (a)/(sqrt(2)) (c) a (d) 2a

    The function f(x)=x(x+4)e^(-x//2) has its local maxima at x=adot Then (a) a=2sqrt(2) (b) a=1-sqrt(3) (c) a=-1+sqrt(3) (d) a=-4

    Find the value of p, when a/sqrt2 = b/sqrt3 = c/sqrt5 = (sqrt(2a) - sqrt(3b) + sqrt(5c))/p .

    If one root x^2-x-k=0 is square of the other, then k= a. 2+-sqrt(5) b. 2+-sqrt(3) c. 3+-sqrt(2) d. 5+-sqrt(2)

    If x = (sqrt(a+2b) + sqrt(a-2b))/(sqrt(a+2b) -sqrt(a-2b)) then prove that bx^2 -ax + b =0

    If the equation |x^2+b x+c|=k has four real roots, then a. b^2-4c > 0 and 0 0 and k > (4c-b^2)/4 d. none of these