Home
Class 12
MATHS
Let a, b, c and m in R^(+). The possible...

Let `a`, `b`, `c` and `m in R^(+)`. The possible value of `m` (independent of `a`, `b` and `c`) for which atleast one of the following equations have real roots is
`{:(ax^(2)+bx+cm=0),(bx^(2)+cx+am=0),(cx^(2)+ax+bm=0):}}`

A

`(1)/(2)`

B

`(1)/(8)`

C

`(1)/(12)`

D

`(1)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
B, C, D

`(b,c,d)` If at least one of the equations has real roots, then
`D_(1)+D_(2)+D_(3) ge 0`
`(b^(2)-5acm)+(c^(2)-4bam)+a^(2)-4cbm ge 0`
`a^(2)+b^(2)+c^(2) ge 4(ab+bc+ca)m`
`4m ge (a^(2)+b^(2)+c^(2))/(ab+bc+ca)`………`(1)` `AA a,b,c in R+`
but `a^(2)+b^(2) ge 2ab` etc.
`:. a^(2)+b^(2)+c^(2) ge ab+bc+ca`
`(a^(2)+b^(2)+c^(2))/(ab+bc+ca) ge 1`
`:.(a^(2)+b^(2)+c^(2))/(ab+bc+ca)|_(min)=1` , Hence `4m` must be less than or equal to the minimum value.
`:. 4m le 1` gtbrgt `implies m le (1)/(4)`
`implies m in (0,(1)/(4)]`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION|121 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES|14 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise Single correct Answer|69 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

The roots of the equation ax^2+bx+c=0 are equal when-

Evaluate the following limits in lim_(xrarr1)(ax^(2)+bx+c)/(cx^(2)+bx+a), a+b+c ne0

Express the following eqautions in the form of ax^(2)+bx+c=0, where a, b, c are real numbers and ane0 .

Find the condition for which the roots of the quadratic equation ax^2+bx+c=0(ane0) are both roots are zero.

If the roots of the equation ax^2+bx+c=0(a!=0) be equal then

IF a,b,c are in G.P prove that the roots of the equation ax^2+2bx+c=0 are equal.

If the equaiton ax^2+bx+c=0 where a,b,c in R have non-real roots then-

If a,b,c in R : a ne 0 and the quadratic equation ax^2+bx+c =0 has no real root, then show that (a+b+c)c gt 0

If b^2ge4ac for the equations ax^4+bx^2+c=0 then all the roots of the equation will be real if

IF b=c=0 then both roots of the equation ax^2+bx+c=0(ane0) are-