Home
Class 12
MATHS
If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))...

If `x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+....` , `y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+....` and `z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+...` then

A

`x`, `y`,`z` are in `A.P.`

B

`(y)/(6)`, `(x)/(3)`,`(z)/(2)` are in `A.P.`

C

`(y)/(6)`, `(x)/(3)`,`(z)/(2)` are in `A.P.`

D

`6y`, `3x`, `2z` are in `H.P.`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `y-x=3((1)/(2^(2))+(1)/(4^(2))+(1)/(6^(2))+…)`
`x-z=((1)/(2^(2))+(1)/(4^(2))+(1)/(6^(2))+…)`
`:. (y-x)=3(x-z)`
`implies4x=y+3zimplies2(x)/(3)=(y)/(6)+(z)/(2)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of ((1)/(4^(-3))-(2)/(10^(-2)))/((1)/(2^(-2))+(1)/(4^(-1)))

show that (7)/(2^((1)/(2)) + 2^((1)/(4)) + 1) = 1 - 3.2^((1)/(4)) + 2.2^((1)/(2)) + 2^((3)/(4))

If A=[((2)/(3), 1,(5)/(3)),((1)/(3), (2)/(3), (4)/(3)),((7)/(3), 2, (2)/(3))] and B=[((2)/(5), (3)/(5), 1),((1)/(5), (2)/(5), (4)/(5)),((7)/(5),(6)/(5),(2)/(5))] , then compute 3A-5B .

3 sin ^(-1 ) ""(2x )/(1+x^(2))-4cos^(-1) ""(1-x^(2))/(1+x^(2))+2tan ^(-1)""(2x )/(1-x^(2))=(pi)/(3)

Factorise : x(1+y^(2))(1+z^(2))+y(1+z^(2))(1+x^(2))+z(1+x^(2))(1+y^(2))+4xyz

The locus of the foot of the perpendicular from the origin on each member of the family (4a+ 3)x - (a+ 1)y -(2a+1)=0 (a) (2x-1)^(2) +4 (y+1)^(2) = 5 (b) (2x-1)^(2) +(y+1)^(2) = 5 (c) (2x+1)^(2)+4(y-1)^(2) = 5 (d) (2x-1)^(2) +4(y-1)^(2) = 5

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

The lines (x)/(1)=(y)/(2)=(z)/(3) and (x-1)/(-2)=(y-2)/(-4)=(3-z)/(6) are

lim_(xto-1)((x^4+x^2+x+1)/(x^2-x+1))^((1-cos(x+1))/((x+1)^(2)) is equal to (a) 1 (b) (2/3)^(1/2) (c) (3/2)^(1/2) (d) e^(1/2)

L_(1):(x+1)/(-3)=(y-3)/(2)=(z+2)/(1),L_(2):(x)/(1)=(y-7)/(-3)=(z+7)/(2) The lines L_(1) and L_(2) are -